

Mobility Management Center

Annual Performance Report 2019

OUNDED 183

MOBILITY GEMENT CENTER

PREPARED BY

Kimley»Horn

Table of Contents

Table of Contents

20191	MPACT AT-A-GLANCEii
EXECU	TIVE SUMMARYii
I. IN	ITRODUCTION4
II. M	OBILITY MANAGEMENT CENTER OVERVIEW
Α.	Capabilities, Services and Goals5
В.	Qualitative Benefits
III.	ASSESSMENT OF BENEFITS
Α.	Performance Measurement Methodology7
В.	Planned Events
C.	Traffic Signal Adjustments due to Lane Closures
D.	Signal Outages
Ε.	Remote Investigation and Response14
F.	Traveler Information
G.	Benefit-Cost Analysis
IV.	CONCLUSION
V.	REFERENCES
VI.	APPENDIX
Α.	Special Events for 2019
В.	Technical Notes and Methodologies

Performance Evaluation for the City of Austin Mobility Management Center, 2019 Austin, Texas

Prepared for: City of Austin Transportation Department Barton Oaks Plaza V 901 S. Mopac Expressway, Suite 300 Austin, Texas 78746

Prepared by: Kimley-Horn and Associates, Inc. 10814 Jollyville Rd #200 Austin, Texas 78759 Registered Firm F-928

Contact: Kent Kacir, P.E. Vivek Deshpande, P.E. Ben Plett, P.E. Lance Ballard, P.E. Christian DeLuca, P.E. (AZ, TX, AL) Lucy Richardson, EIT Allyson Richey, EIT 972-770-1300

March 16, 2020

2019 IMPACT AT-A-GLANCE

The graphic below summarizes the information discussed throughout this report, representing totals for 2019:

EXECUTIVE SUMMARY

The City of Austin Mobility Management Center's (MMC's) goal is the continued improvement of arterial operations for the City's transportation network for all users. MMC staff provide a variety of services to the City of Austin and traveling public. It is staffed 7 days a week, and MMC personnel perform a wide range of duties. These duties include addressing citizen requests, deploying resources to address equipment issues, providing incident management, assisting emergency service providers, assisting with traffic management during special events, monitoring day-to-day traffic operations, providing travel information, and developing signal timing plans.

In performing these services, MMC staff provide distinct benefits that are quantified in this report. These benefits are analyzed and documented annually to evaluate the benefit-cost ratio of the MMC. Only a portion of the total benefits are quantifiable, so the remaining benefits are discussed qualitatively.

Sources of quantitative benefits provided by MMC staff include timing adjustments for lane closures related to incidents & special events, signal outage responses, and remote responses to citizen requests. These benefits are quantified using data reported by MMC staff throughout 2019 and through the use of traffic simulation software. Signal timing adjustments help service the additional turning demand at upstream signals and change in traffic patterns during lane closures and effectively reduces delays and queues. The added benefits from MMC staff proactively implementing timing adjustments include saving the public time, reducing vehicle emissions, and lowering the chance of secondary collisions.

Additionally, MMC staff identified approximately 38% of the signal outages before the issue was reported as a CSR. In each of these instances, the operators reduced the response time for a technician to resolve the issue, which translates to several hours of delay saved for vehicles traveling through the intersection. Of the remaining 62% of signal outages, most were 3-1-1 calls that were received at approximately the same time MMC staff was alerted by KITS. In these instances, the CSR was used to track in lieu of staff creating an additional ticket. This process is being adjusted for the coming year to better reflect MMC responsiveness. It should be noted that flash calls may have occurred at locations without communication, or the CSR came in while staff were dispatching a technician and had not yet logged the outage. Lastly, the remaining portion of the signal outages likely occurred in the overnight period outside of normal operating hours. In the current operations, MMC operators now manage CSRs by investigating all the complaints and efficiently dispatching technicians if need be, ultimately increasing output of resolved CSRs and improving utilization of signal technicians and city resources. There are other qualitative benefits, including distribution of traveler information and coordination with neighboring agencies that is handled by the MMC and outlined further in this report.

This report estimates that the benefits the MMC staff provides to the City of Austin and the traveling public outweighs the cost of operating the MMC. The benefit-cost analysis conducted showed a total benefit of more than \$4.7 million, and an operating cost of approximately \$2 million. This resulted in a benefit-cost ratio of 2.4 for 2019. This is an increase from the \$4.3 million of benefits and the benefit-cost ratio of 2.4 reported in 2018. Activities providing the largest rate of return benefit included arterial lane closure signal timing and special event management.

I. INTRODUCTION

The City of Austin Mobility Management Center (MMC) staff perform many duties that improve the movement of people and goods throughout the City of Austin providing an added benefit to the people and businesses traveling along the roadway network. The MMC staff address citizen service requests, deploy resources to address equipment issues, provide incident management, assist emergency service providers, aid in special event management, monitor day-to-day traffic operations, provide travel information, develop signal timing plans and more.

Several years ago, the operation and staffing of the MMC were expanded to provide additional benefit to the traveling public and to mitigate increasing congestion on City of Austin roadways. The MMC's goal is the continued improvement of arterial operations for the City's transportation network for all users.

This report serves as an internal summary of services and benefits provided by MMC staff as part of the MMC operations contract in 2019. This report assesses the impacts of the MMC for the year 2019, provides information to the City of the MMC's performance, and outlines specific benefits in a benefit-cost analysis. Only a portion of the total benefits are quantifiable. For benefits to be included, the performance measure must be understandable to technical and nontechnical audiences, calculated easily, and estimated accurately. The benefits are largely reported in terms of monetary cost savings from reduction in vehicle occupancy delay. This report is the third of an annual series that documents the performance of the MMC expansion. The methodology in this report is repeated from the 2018 report.

II. MOBILITY MANAGEMENT CENTER OVERVIEW A. Capabilities, Services and Goals

The MMC's goal is the continued improvement of arterial operations for the City's transportation network for all users. The capabilities and services provided to meet these goals include:

- Monitor traffic conditions and signal operations using City's network of communications and CCTV coverage
- Investigate CSRs
- Dispatch technicians and provide support for technicians in the field
- Interface with citizens to investigate CSRs and communicate results
- Make timing adjustments in response to lane closures and incidents
- Coordinate with other City departments and contractors on construction activities and special events
- Coordinate closely with TxDOT and Mobility35 on major construction projects along state roads and highways, and manage signal operations during construction
 - o Provide on-call support for contractors in the field during construction events
- Develop specific timing plans for special events
- Send out DMS messages to advise public of special events and abnormal road conditions, which may require coordination with TxDOT for significant road closures
- Adjust detection as necessary to maintain optimal system operation

The MMC is actively staffed seven days a week by operators and managers, with expanded hours during special events. MMC hours are:

- Monday through Friday: 6:00 AM 8:00 PM
- Saturday 9:00am 6:00pm
- Sunday: 10:00 AM 6:00 PM

Additionally, Staff the Combined Transportation and Emergency Communication Center (CTECC) is staffed on a regular basis for ongoing coordination in day-to-day traffic management and response. Consistently staffing CTECC is a key component in continuing communications and coordination with other neighboring agencies, including TXDOT. CTECC is also staffed for unique special events. In 2019, MMC staff helped coordinate staff the Emergency Operations Center during the F1 Grand Prix, a Presidential visit, and a Vice Presidential visit to the city.

B. Qualitative Benefits

Many of the MMC staff's daily activities provide qualitative benefits to the traveling public and City of Austin staff. These benefits, although cannot be included in the benefit-cost ratio, are important to improve the operations of the MMC and the coordination between agencies. These activities are listed below.

MMC Annual Performance Report 2019

- Provide MMC tours to a variety of groups ranging from UT students, other municipal agencies, 3-1-1 operators, and other guests. This gives a chance to display the City's capabilities and infrastructure and showcase the City as a traffic management leader in the area.
- Represent City at meetings for AIM High (Austin area Incident Management for Highways). The AIM High meetings are held every month at CTECC and are attended by TxDOT, the Austin Police Department (APD), the Austin Fire Department, the Sheriff's office, TxDOT Toll Division, the Central Texas Regional Mobility Authority (CTRMA), the City of Round Rock, the City of San Marcos, and various towing companies. Austin MMC presence at these meetings has allowed for the development and strengthening of relationships with APD and highway patrol. Now, during a major incident on the highways, law enforcement does not override signal timings, and instead the responsibility falls to the MMC. This allows for the MMC to maximize the signal output and relieve officers to attend other needs.
- Attend MMC Agencies Meetings every other month (just before the AIM High meeting). These meetings are attended by agencies that operate a MMC, including TxDOT, CTRMA, the City of Round Rock, and the City of San Marcos. Involvement in these meetings has improved communication and coordination between these agencies, which is critical during a major event and for timing corridors that fall under multiple jurisdictions.
- Attend ROW Closure meetings, which are a newer initiative in the City of Austin, intended to address all lane closures in the city and centralize lane closure notifications. MMC staff attendance at these meetings helps the MMC prepare the timing adjustments and traveler information that may be necessary during the closures. This coordination also helps MMC staff track and identify lane closure issues for inspectors.
- Support Capital Metro TSP Reporting by providing background information and TSP data to the Texas A&M Transportation Institute (TTI), who was retained by Capital Metro.
- Enhance Weekend Retiming Efforts by supporting field work done by signal engineers. Signal engineers can now call the MMC to make offset changes while they are finetuning, instead of pulling over to manually make changes at each traffic signal controller.
- Review Traffic Control Plans for special events. MMC staff can provide suggestions to make sure special event operations will be successful. This is especially valuable as MMC staff can provide input from previous occurrences of the event and supplement the designated route with signal timing adjustments.

Furthermore, there are additional benefits that cannot currently be quantified, including actions resulting from other supporting tasks of the MMC operations contract (e.g. software and other initiatives). These qualitative benefits include:

- Dissemination of traveler information
- Assist in deployment and maintenance of video detection
- Coordination with schools to deploy and maintain school zone flashers
- Identification and integration of enhancements to various transportation software, including Advanced Transportation Management System
- Deployment of Automated Traffic Signal Performance Measures software for advanced signal operations
- Coordination to procure fiber management software and develop Citywide Communication Plan RFQ
- Development Video Management Software RFI
- Analysis of retiming benefits using probe data
- Support for grant applications
- Monthly analysis of citywide performance measures on critical corridors

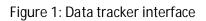
The expanded MMC operations ultimately allows for many additional tasks to be completed for the City of Austin; translating into both time saving for the public and improved safety of the Austin roadway network.

III. ASSESSMENT OF BENEFITS

A. Performance Measurement Methodology

Much of the data for the benefit assessment presented herein is from the City of Austin's data tracker (Figure 1). This online system was developed in-house at the City of Austin and is fully integrated with the City of Austin's 3-1-1 service. This service is the primary process by which citizens can submit requests, known as Citizen Service Requests (CSRs), directly to the MMC. It is also the tool MMC operators use to manage and record day-to-day operations. Examples of recorded information within the data tracker include:

- Signal outages and signals in flash mode
- Signals with malfunctioning equipment or detectors
- Lane blockages near signal locations
- Signal retiming information and needs
- Citizen Service Requests (CSRs)
- Dynamic message sign updates
- Social media messages
- Dispatched technicians
- Special event operations



MMC Annual Performance Report 2019

Using the data tracker, MMC operators track the actions taken to investigate and resolve CSRs. The data tracker also reports information in regard to response time for signal outages and dispatched technician. Signal timing adjustments are recorded in the data tracker which can be used to quantify the benefit of those adjustments during lane closure incidents, planned events, and other traffic congestion issues.

	rans	portati	on Management C	enter					Logged in as Lucy Richardson - Account Settings - Log Out
O Ne		Reports	Call Log Q Search Issues		h Activities	O Aging Report			
All Issue	New	In Progret	ss Engineer Review Signal Request Re	rview					
	keyword .00 of 15397		arch						100 per page * Page 1 * of 154 < >
letails	Issue ID	SR Number	Location	Engineer Area	Issue	Issue Reported	Activities	Source	Created
	TMC19- 100995	19- 00027894	MC NEIL DR / PARMER LN		Traffic Signal - Maintenance	Timing	Identify Asset	311	01/25/2019 01/25/2019 Chris In 10:52 10:55 Reyes Progress
	TMC19- 100905		BECKETT RD / DAVIS LN	SOUTHWEST	Traffic Signal - Maintenance	[MC Issue Report		
	TMC19- 100970	19- 00027616	PARMER LN / LAMPLIGHT VILLAGE AVE		Traffic Signal - Maintenance		Today's Issues by Status		Today's Issues by Type
	TMC19- 100990	19- 00027837	CESAR CHAVEZ ST / PLEASANT VALLEY RD		Traffic Signal - Maintenance	Bulb Out	Closed (Resolved)		Excludes duplicate service requests.
	TMC19- 100985		BURNET RD / PALM WAY (IBM DRIVEWAY)		Other				Dig Tess
	TMC19- 100980	19- 00027657	5501 BLK MC NEIL DR (MCNEIL HIGH SCHOOL)		Traffic Signal - Maintenance	Timing	4 In Progress		Эd
	TMC19- 100975	19- 00027652	CAMERON RD & CLEAR CREEK DR. AUSTIN, TX		Dig Tess		38		Contraction Contraction 1
	TMC19-	19-	6TH ST / LAMAR BLVD		Traffic Signal -	Timing	Repairs Complete		-

The data tracker is the primary source of information used to calculate the benefits from the MMC. In select cases, this data is paired with data from traffic modeling software to analyze a specific type of incident.

B. Planned Events

Austin is home to hundreds of special events each year, ranging from small local events to international events attracting thousands of attendees. Large events flood the transportation network with travelers during ingress and egress periods, causing lengthy delays. Events often come with street closures, further disrupting typical traffic patterns. In addition to special events, Austin has planned street closures from construction projects adversely affecting traffic flow. MMC staff coordinate signal timing plans proactively and reactively to mitigate traffic delays due to the influx in traffic volumes or reduced roadway capacity from street closures. The customized signal plans increase capacity at adjacent traffic signals, reduce the length of queues, and appropriately service the unique traffic volumes. These actions performed by MMC staff can equate to thousands of hours saved in road user delay.

MMC Annual Performance Report 2019

To evaluate time savings provided by MMC staff during special events, sample events at the Frank Erwin Special Events Center were analyzed. One of the events had a special egress timing plan, and the other event did not. Data was gathered from INRIX Analytics to evaluate how many minutes an egress timing plan saved per vehicle, compared to the event with no signal timing adjustments. The results equated to a reduction of 14% in travel time on the egress roadway in the event area.

These findings were then applied to the following large-scale events in Austin: UT football games, Austin City Limits, South by Southwest (SXSW), Formula 1 COTA, and Trail of Lights. When applied to these events, the road user cost savings are estimated to be a little over \$1.7 million. This is an increase of nearly \$300,000 dollars over estimated savings from 2018 of \$1.4 million. MMC actively service more than 71 events in Austin each year, therefore this calculation is a conservative estimate of the total road user cost savings. The table below shows the assumptions and calculations for special event road user cost savings. The assumptions include a vehicle occupancy rate of 2.5 persons per vehicle and a 20% multimodal reduction.

Special Event Management							
					Corridor	Travel Time	
			Total	Multimodal	Average	Savings (min)	
Event		Dates	Attendance	Reduction	Travel Time	per Vehicle	Event Benefit
Austin City Limits	Weekend 1	10/4-10/6	225,000	20%	22.73	3.182	\$ 186,786.66
Austin City Linits	Weekend 2	10/11-10/13	225,000	20%	22.53	3.154	\$ 185,127.35
SXSW		3/8-3/17	417,400	20%	22.31	3.123	\$ 340,063.08
	vs. LA Tech	8/31	93,418	20%	21.65	3.031	\$ 73,877.32
	vs. LSU	9/7	98,763	20%	21.74	3.044	\$ 78,436.12
UT Football	vs. OSU	9/21	96,936	20%	22.95	3.213	\$ 81,255.24
	vs. Kansas	10/19	97,137	20%	23.09	3.233	\$ 81,922.16
	vs. KSU	11/9	97,833	20%	22.54	3.156	\$ 80,548.65
	vs. Texas Tech	11/29	93,747	20%	20.75	2.905	\$ 71,051.66
F1 COTA		11/1-11/3	269,889	20%	22.56	3.159	\$ 222,425.70
Trail of Lights		12/10-12/23	400,000	20%	21.73	3.042	\$ 317,427.67
						Total Benefit:	\$ 1,718,921.63
Assumptions							
Assumed TT Improveme	ent:	14%	from Frank Erw	in Special Even	ts Center Analysi	S	
TxDOT Road User Cost per vehicle: \$29.35		\$29.35	from TxDOT Ro	ad User Costs			
TxDOT Road User Cost \	Vehicle Occupancy:	1.5	from TxDOT Ro	ad User Costs			
TxDOT Road User Cost		\$19.57	from TxDOT Ro				
Vehicle Occupancy for	Special Events:	2.5	from FHWA pu	blication Manag	ging Travel from	Planned Special E	/ents
Special Event MultiMod	dal Reduction:	20%					

Table 1: Special Event Road User Cost Savings

Furthermore, MMC staff share real-time information via dynamic message signs (DMS) and Twitter (Figure 2). This information minimizes congestion-related impacts by alerting drivers of impacts and suggesting routes to efficiently utilize the roadway network capacity. The management of event traffic adds to the prosperity of the event and benefits the people traveling to the event, or providing services in support of the event, and to the normal traffic using the adjoining roadways. Coordination with other involved agencies provides additional benefit by helping events operate more smoothly. Although the benefits are apparent, quantifying the value is difficult and therefore remains unreported in this report. A list of all events managed can be found in Appendix A.

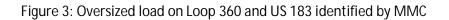
EVENT STREET CLOSURE #ATXTraffic: F1 US grand Prix Shuttle Services, Friday, Nov. 1, 6 a.m. – Sunday, Nov. 3, 11:30 p.m. See street closures document for details on East 3rd Street closure from Red River to IH-35 Frontage Road: austintexas.gov/event/formula-...

3:01 PM · Oct 31, 2019 · Hootsuite Inc.

Figure 2: F1 Circuit of the Americas street closure information

c. Traffic Signal Adjustments due to Lane Closures

Lane closures happen on Austin roadways each day. Some closures are due to planned events, but others are unexpected, for example when a traffic collision occurs or when a tree has fallen into the roadway. MMC staff identify the incident by locating the closure or congestion within view of one of the closed-circuit television (CCTV) cameras located at traffic signals throughout the City of Austin. MMC staff respond by alerting the public through Twitter or, if available, at permanent DMS. Figure 3 shows a tweet from the MMC alerting drivers of an oversized load and advising to use an alternative route due to subsequent delays, accompanied with a photo of the incident on Loop 360 and US 183.



At Loop 360 & US 183, a stalled truck carrying an oversized load is blocking two lanes eastbound along Loop 360 on the overpass. Expect delays and consider alternate routes. #ATXtraffic

3:18 PM · Nov 14, 2019 · Twitter Web App

The benefit from alerting the public is currently unquantifiable, however the time savings from MMC operators' signal adjustments that improve traffic flow are calculated in this report. MMC staff implement signal timing adjustments at adjacent signals to accommodate the changes in traffic flow due to lane closures. Often, this new traffic pattern is very different than the expected daily traffic movements that are addressed in routine annual signal timing efforts. The new traffic pattern demands a custom signal plan to help clear long queues due to the reduced capacity of the roadway. The volume of turning movements upstream from the lane closure often increases, because through traffic becomes very congested from the lane closure and drivers take alternative routes. Signal timing adjustments help service the additional turning demand at upstream signals and effectively results in shorter delays and queues. The added benefits from a reactive MMC implementing timing adjustments include saving the public time, reducing vehicle emissions, and lowering the chance of secondary collisions.

The delay savings is quantified in Table 2 for both arterial and highway lane closures. The delay hours saved is estimated within traffic modeling software by modeling a typical intersection where 10 seconds of green traffic was added to the effected approach, alleviating delays. Assumptions are reported in the technical addendum.

Lane Closure Response	# of Incidents	Delay (hrs)	
Arterial lane closures - major-major	306	53.33	
Arterial lane closures - major-minor	306	40	
Total annual delay (hrs)	285	60	
Value of time (Source: TxDOT) (\$)	\$29.35		
Annual delay savings (\$)	\$	838,236.00	
Highway Lane Closure Response	# of Incidents	Delay (hrs)	
Highway Lane Closure Response Highway lane closures	# of Incidents 41	Delay (hrs) 281	
		281	
Highway lane closures	41	281 21	
Highway lane closures Total annual delay (hrs)	41 115	281 21	

Table 2: Lane Closure Responses

D. Signal Outages

MMC staff actively identify and respond to signal outages across the City of Austin (Figure 4). During most signal outages, the signal is in a flashing red state; rarely do the signal outages result in a dark signal. Even when signals lose power, approximately half (46%) of signals have a battery backup unit (BBU) that allows the signal to go into the flashing red state. A signal outage can be caused by one of many reasons, including adverse weather such as lightning or high winds, power outages, vehicle collisions with signal equipment, or malfunctioning equipment. The City of Austin responded to 1,982 outages during MMC operating hours in 2019, an average of five to six times a day. A signal outage can disrupt operation and interrupt traffic flow, causing substantial delays. This can be exacerbated if the outage takes place during the peak hours.

In addition to lengthy delays associated with traffic signal outages, outages can increase likelihood of collisions at the intersection. Safety is a top priority for the City of Austin and the MMC, therefore, response time for a technician to be dispatched to the location is critical.

Traffic signal at Martin Luther King Jr & Airport is flashing red in all directions. A signal technician is on the way! Treat as an ALL-WAY STOP. #atxtraffic #VisionZero

2:09 PM · Dec 28, 2019 · Twitter Web App

Figure 4: Real-time tweet alerting of signal outage and technician dispatch

Most signal outages are identified by 3-1-1 CSRs, the Austin Police Department, or MMC staff. The MMC, actively staffed for 14 hours of the day, identifies signal outages through cameras or the Advanced Transportation Management System (KITS). MMC staff identified approximately 38% of the signal outages before the issue was reported as a CSR. In each of these instances, the operators reduced the response time for a technician to resolve the issue, which translates to several hours of delay saved for vehicles traveling through the intersection. Of the remaining 62% of signal outages, most were 3-1-1 calls that were received at approximately the same time MMC staff was alerted by KITS. In these instances, the CSR was used to track in lieu of staff creating an additional ticket. This process is being adjusted for the coming year to better reflect MMC responsiveness. Additionally, these flash calls may have occurred at locations without communication, or the CSR came in while staff were dispatching a technician and had not yet logged the outage. Lastly, the remaining portion of the signal outages likely occurred in the overnight period outside of normal operating hours.

To measure delays associated with signal outages, traffic simulation software was used to estimate vehicle travel delays at intersections when in flash. A signal outage was modeled at a Major-Major intersection, Major-Minor intersection, and Minor-Minor intersection during the AM peak, PM peak and off-peak hours. The delay at these intersections over time was subtracted from the typical delays to get additional travel delay for each intersection due to the signal outage. To calculate the cost savings, the TxDOT value of passenger vehicle time was used and applied to the time saved at an intersection from identifying the issue more quickly.

	Total Signal Outages	Outages Identified by MMC	Vehicle Delay Saved (hrs)	Со	st Savings by MMC
January	63	30	897	\$	26,330.47
February	63	21	628	\$	18,431.33
March	108	50	1495	\$	43,884.12
April	236	108	3230	\$	94,789.70
May	252	117	3499	\$	102,688.84
June	256	96	2871	\$	84,257.51
July	225	109	3260	\$	95,667.38
August	219	58	1734	\$	50,905.58
September	135	44	1316	\$	38,618.03
October	121	41	1226	\$	35,984.98
November	135	25	748	\$	21,942.06
December	169	61	1824	\$	53,538.63
2019 Total	1982	760	22727	\$	667,038.62

Table 3 shows the cost savings from MMC staff improved response time for each month.

E. Remote Investigation and Response

One of the major benefits provided by MMC staff is the ability to remotely investigate and respond to Citizen Service Requests (CSRs). CSRs can be submitted through the Austin 3-1-1 service and can be classified into the following categories:

- Traffic signal maintenance
- Traffic signal new/change
- School zone flashing beacon
- Emergency vehicle preemption device

CSRs are assigned to appropriate personnel at the MMC. Addressing a CSR may include activities such as monitoring on CCTV, dispatching a technician, updating signal timing plans, and contacting the citizen to follow up.

Before the expansion of the MMC, technicians were dispatched throughout the city to address CSRs regardless of the issue reported. Now MMC staff can remotely investigate the cause of various issues and determine whether dispatching a technician is truly necessary. Many CSRs can be resolved by remote investigation, using tools such as KITS and CCTV (Figure 5). If the issue can be resolved and closed remotely, a technician does not need to be dispatched to the field. This saves valuable time and enables them to work on the next available task.

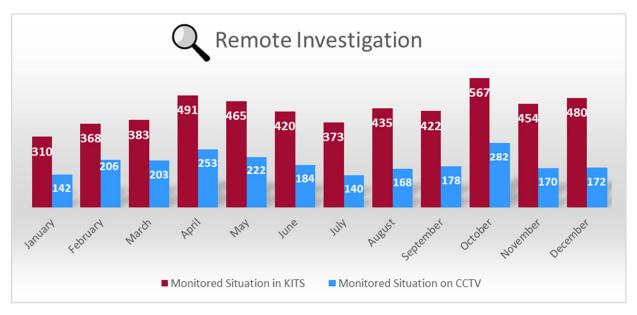


Figure 5: 2019 Monitored Situations by Month

Additionally, the expansion of the MMC gave operators the responsibilities of responding to CSRs, relieving the City's signal engineers of that duty. This provides an additional benefit to the City and the public, as signal engineers can now focus their time on signal timing and construction.

When a dispatch is necessary, MMC operators can investigate the CSR in a similar manner and identify specific actions for the technician to take after arriving at the field location. This saves valuable time troubleshooting in the field.

The resulting calculations of benefits of remote investigation and response are shown in Table 4. The calculations are based on time saved for technicians and engineers. The total CSRs and CSRs resulting in a dispatch were determined from the actual CSR records from 2019.

Overall, the remote investigation and response capabilities of MMC staff provided more than \$1.2 million in cost savings.

Remote Response Capabilities		
Total CSRs handled by MMC		11672
Total CSRs resolved without requiring a dispatch		5530
Total CSRs that result in a dispatch		6142
Avg time spent by signal tech dispatch (incl. travel) (hr)		1.5
Total time savings for signal tech (hrs) (No tech dispatched)		8295
Loaded cost for signal tech (\$/hr)	\$	100.00
Annual Technician Cost Savings (\$)	\$	829,500.00
Total CSRs that would require signal eng intervention		1615
Avg time spent by signal eng to respond to a request (hr)		0.5
Total time savings for signal eng (hrs) (with tech dispatch)		807.5
Loaded cost for signal eng (\$/hr)	\$	125.00
Annual Engineer Cost Savings (\$)	\$	100,937.50
Response Cost Savings Subtotal (\$)	\$	930,437.50
Remote Investigation Capabilities		
Total CSRs that result in a dispatch		6142
Average time saved by signal tech troubleshooting (hrs)		0.5
Total time savings for signal tech (hrs)		3071.0
Loaded cost for signal tech (\$/hr)	\$	100.00
Investigation Cost Savings Subtotal (\$)	\$	307,100.00
Grand Total	\$1	,237,537.50

Table 4: Remote Response and Investigation Capabilities

Kimley »Horn Page 15

F. Traveler Information

MMC staff provide traveler information in a variety of formats to the traveling public. This includes information about travel time, road closures, incidents affecting roadways, signals on flash, and special events. MMC staff disseminate this information through channels including Twitter, DMS boards around the city, and local media. In 2019, personnel in the MMC tweeted an average of 151 times a month (example in Figure 6, monthly averages in Figure 67). These tweets made additional impact as they were retweeted by local media and other neighboring agencies. This included tweets both from the MMC as well as re-tweeting neighboring organizations, such as the City of Austin Police Department. The trend of increasing tweets per month after the beginning of the year can be attributed to operators (instead of only managers) being able to tweet themselves directly.

Figure 6: Tweet alerting of an event street closure

When information about lane closures or signal outages is shared with the public, travelers can make the choice of taking an alternate route. By redistributing traffic throughout the network, there are fewer vehicles traveling on the route impacted by the incident. This decreases delay for all affected vehicles.

Benefits from sharing traveler information were not quantified for this analysis due to the difficulty of equating social media impact to a dollar amount.

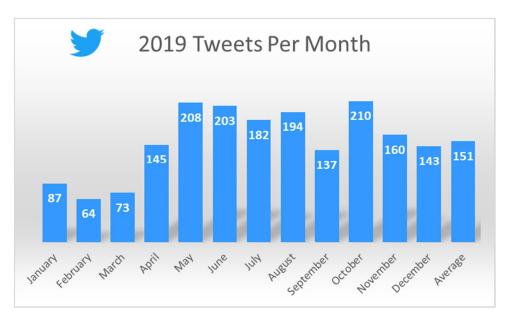


Figure 7: 2019 Average tweets per month

G. Benefit-Cost Analysis

To summarize the analyses presented above, Table 5 shows the benefits from each activity against the total cost. The overall benefit-cost ratio is 2.4. This is a conservative estimate, because there are many other actions that MMC staff take that cannot be easily quantified in this way. MMC staff have also identified ways to further improve procedures and operations, including additional operator training, more cross-agency coordination during special events, and further use of data reporting tools to investigate CSRs. This will have an even more positive impact on the City of Austin in the future.

Overall Benefit-Cost						
Activity	Ber	nefit to Public				
Signal Timing - Arterial Lane Closure	\$	838,236.00				
Signal Timing - Highway Lane Closure	\$	338,141.35				
Signal Outage Response	\$	667,038.62				
Remote Response	\$	930,437.50				
Remote Investigation	\$	307,100.00				
Special Event Management	\$	1,718,921.63				
Total Benefit	\$	4,799,875.10				
Total Cost	\$	1,979,814.24				
Benefit-Cost Ratio		2.4				

-	~ ···		
Table 5:	Overall	Benefit-Cost	Analysis

IV. CONCLUSION

The MMC provides benefit to the City of Austin and the traveling public that outweighs the cost of operating the MMC. The benefit-cost analysis conducted showed a total benefit of more than \$4.7 million, and an operating cost of approximately \$2 million. This resulted in a benefit-cost ratio of 2.4 for 2019. These benefits were an increase from the benefits of \$4.3 million reported in 2018.

MMC staff monitor current traffic conditions to detect incidents and lane closures, allowing operators to make critical timing adjustments reducing delay for affected traffic and traveling public. MMC operators remotely monitor the status of signals, and dispatch technicians efficiently when a signal outage occurs. By detecting signal outages prior to receiving citizen calls about the outage, technicians can respond to signal outages more quickly reducing the amount of time a signal is in flash. This results in a significant decrease in delay for traffic in that area. Remotely investigating CSRs also provides benefit to the public. MMC staff can diagnose malfunctioning equipment, dispatch technicians as needed, and provide guidance to technicians repairing equipment in the field.

Further integrating the MMC into the City of Austin's operations and continued partnership with neighboring agencies such as the City of Austin Police Department will increase the impact it has on the city. Additional initiatives to enhance the MMC's effectiveness will provide additional benefit to the public.

V. REFERENCES

City of Austin Data and Performance Hub.

http://transportation.austintexas.io/

TxDOT Road User Costs.

https://www.txdot.gov/inside-txdot/division/construction/road-user-costs.html

FHWA Managing Travel for Planned Special Events

https://ops.fhwa.dot.gov/program_areas/sp-events-mgmt/handbook/handbook.pdf

VI. APPENDIX

A. Special Events for 2019

Special Cultural and Sport	ting Events in 2019
3M Half Marathon	Sun, Jan 20
MLK March & Fest	Mon, Jan 21
Cupid's Undie Run	Sat, Feb 9
Austin Marathon	Sun, Feb 17
Texas Independence Parade	Sat, Mar 2
South by Southwest Festival	Fri, Mar 8 to Sun, Mar 17
Indy Car Classic (Circuit of the	
Americas)	Fri, Mar 22 to Sun, March 24
Dell Match Play	Mon, Mar 25 to Sun, Mar 31
Urban Music Festival	Fri, Mar 29
St. James Mission 5k	Sat, Mar 30
Head for the Cure 5k	Sun, Mar 31
Kite Festival	Sun, Mar 31
Statesman Capitol 10k	Sun, Apr 7
Moto GP	Fri, Apr 12 to Sun, Apr 14
Art City Austin	Sat, Apr 13
Longhorn Run	Sat, Apr 13
Austin Reggae Festival	Fri, Apr 19 to Sun, Apr 21
Eeyore's Birthday	Sat, Apr 27
Math Pentathlon	Sat, May 4
Pecan Street Festival	Sat, May 4
Sunshine Run	Sun, May 5
Texas Peace Officer's Memorial	Mon, May 6
TCEQ Environmental Trade Fair and	
Conference	Tue, May 14 to Wed, May 15
Blues on the Green	Wed, May 22
Life Time Tri Cap Texas	Mon, May 27
	Tues, May 28, Wed, May
AISD High School Commencements	29, Sat, May 31
Margarita Run	Tues, Jun 4
Blues on the Green	Wed, Jun 12
ROT Rally	Fri, Jun 14
Central Texas Juneteenth	Sat, Jun 15
Camp Nowhere (Circuit of the	
Americas)	Sun, Jun 23
4th of July Fireworks	Thur, Jul 4
Blues on the Green	Wed, Jul 17
Blues on the Green	Wed, Aug 7
UT vs. Louisana Tech	Sat, Aug 31
Zilker Relays	Fri, Sep 6
UT vs. LSU	Sat, Sep 7
El Grito De Independencia	Sun, Sep 15
continued on ne	ext page

Special Cultural and Sporting Ev	ents in 2019 - Continued
Pecan Street Festival	Sat, Sep 21 to Sun, Sep 22
AIDS Walk	Sat, Sep 21
UT vs. OSU	Sat, Sep 21
5.12K Run to Brunch	Sun, Sep 22
The Texas Tribune Festival	Sat, Sep 28
NAMIWalks Austin	Sat, Sep 28
ACL Weekend 1	Fri, Oct 4 to Sun, Oct 6
ACL Weekend 1	Fri, Oct 11 to Sun, Oct 13
UT vs. Kansas	Sat, Oct 19
Austin Heart and Stroke Walk	Sat, Oct 19
Livestrong Challenge	Sun, Oct 20
Texas Women's Conference	Thur, Oct 24
Texas Book Festival	Fri, Oct 25 to Sun, Oct 27
Viva la Vida Festival and Parade	Sat, Oct 26
Frank Erwin Center Event	Mon, Oct 28
VPOTUS Visit	Tues, Oct 29
Formula 1	Fri, Nov 1 to Sun, Nov 3
St. Andrews School Homecoming	Fri, Nov 1
Frank Erwin Center Event	Fri, Nov 1
Run for the Water	Sun, Nov 3
Frank Erwin Center Event	Tues, Nov 5
UT vs. Kansas State	Sat, Nov 9
Veterans Day Parade	Mon, Nov 11
Frank Erwin Center Event	Tues, Nov 12
Frank Erwin Center Event	Wed, Nov 13
Frank Erwin Center Event	Thur, Nov 14
Frank Erwin Center Event	Fri, Nov 15
Frank Erwin Center Event	Sun, Nov 17
Frank Erwin Center Event	Wed, Nov 20
POTUS Visit	Wed, Nov 20
Frank Erwin Center Event	Sun, Nov 24
Turkey Trot	Thur, Nov 28
UT vs. Texas Tech	Fri, Nov 29
Chuy's Children Giving to Children	
Parade	Sat, Nov 30
Frank Erwin Center Event	Sat, Nov 30
Trail of Lights	Sat, Dec 7 to Mon, 23
Downtown Holiday Stroll	Sat, Dec 7

B. Technical Notes and Methodologies

This appendix contains further details on the calculations performed for each category of benefits discussed in the main body of the report. The calculations were based on entries from the data tracker, including MMC operator notes, MMC manager notes, and logs from CSRs.

1. Planned Event Road User Cost Savings

To calculate benefits from ingress and egress traffic signal timing plans for planned events in Austin, travel time data was collected during events at the Frank Erwin Special Event Center. An event with no egress timing plan was compared with a similar-sized event that did have an egress plan. The resulting time savings equated to 14% along the main egress roadway. The 14% time savings were then applied to large scale events that always have custom ingress and egress timing plans implemented. The events included in the analysis were Austin City Limits, UT Austin football games, South by Southwest, and Trail of Lights. A 14% travel time reduction equated to 2.5 to 2.8 minutes in time savings for each vehicle traveling to and from the events.

The vehicle time savings were multiplied by the total number of vehicles traveling to the event. This vehicular volume was calculated by dividing the event attendance by the expected vehicle occupancy of 2.5 persons per vehicle, with a 20% multimodal reduction. This total delay reduction was multiplied by TxDOT Road User Cost to determine the total road user cost savings for each event. The large events are only a fraction of the total events in Austin, with most events not included in this analysis. Consequently, this estimation is a conservative value of the total delay savings during special events. A table summarizing the assumptions and calculations is shown below.

Special Event Management							
					Corridor	Travel Time	
			Total	Multimodal	Average	Savings (min)	
Event		Dates	Attendance	Reduction	Travel Time	per Vehicle	Event Benefit
Austin City/Limits	Weekend 1	10/4-10/6	225,000	20%	22.73	3.182	\$ 186,786.66
Austin City Limits	Weekend 2	10/11-10/13	225,000	20%	22.53	3.154	\$ 185,127.35
SXSW		3/8-3/17	417,400	20%	22.31	3.123	\$ 340,063.08
	vs. LA Tech	8/31	93,418	20%	21.65	3.031	\$ 73,877.32
	vs. LSU	9/7	98,763	20%	21.74	3.044	\$ 78,436.12
UT Football	vs. OSU	9/21	96,936	20%	22.95	3.213	\$ 81,255.24
UT FOOLDAII	vs. Kansas	10/19	97,137	20%	23.09	3.233	\$ 81,922.16
	vs. KSU	11/9	97,833	20%	22.54	3.156	\$ 80,548.65
	vs. Texas Tech	11/29	93,747	20%	20.75	2.905	\$ 71,051.66
F1 COTA	^ 	11/1-11/3	269,889	20%	22.56	3.159	\$ 222,425.70
Trail of Lights		12/10-12/23	400,000	20%	21.73	3.042	\$ 317,427.67
						Total Benefit:	\$1,718,921.63
Assumptions							
Assumed TT Improveme	ent:	14%	from Frank Erw	<i>i</i> n Special Even	ts Center Analysi	S	
TxDOT Road User Cost per vehicle: \$29.35			from TxDOT Ro	ad User Costs			
TxDOT Road User Cost	Vehicle Occupancy:	1.5	from TxDOT Ro	ad User Costs			
TxDOT Road User Cost	per person:	\$19.57	from TxDOT Ro	ad User Costs			
Vehicle Occupancy for	Special Events:	2.5	from FHWA pu	olication Mana	ging Travel from	Planned Special E	vents
Special Event MultiMod	dal Reduction:	20%					

2. Traffic Signal Adjustments due to Lane Closures

To calculate benefits from traffic signal adjustments due to lane closures, lane closure incidents logged in the data tracker were used. MMC staff make notes of lane closures and subsequent timing adjustments at affected signals. These incidents were classified into major-major intersections and major-minor intersections and assumed to happen equally at both types of intersections. The number of highway lane closures logged in the data tracker was artificially low, possibly because many highway lane closures were due to construction events and traffic signal adjustments were developed in advance. Therefore, the assumption of 36 closures per month was repeated from previous reports. The delay per incident was also assumed to be the same as previous CTR reports. The table below shows the calculations for arterial lane closure responses. Number of lane closure incidents was counted and average on a two-month basis and then extrapolated to be representative of the entire year.

Off-Signal Retiming for Lane Blocking Incidents	Major-Major	Major-Minor	
Normal Intersection Delays (sec/veh)	46.1		
Intersection Delays from closure (sec/veh)	7	7.6	
Intersection delays with signal adjustments (sec/veh)	6!	ō.6	
Delay savings (sec/veh)		12	
Intersection Volume (veh/hr)	4000	3000	
Total delay savings overall per hr (hrs)	13.3	10	
Assumed lane closure time (hrs)	4	4	
Total delay savings during lane closure (hrs)	53.3	40	
Value of Vehicle Travel Time (source: TxDOT)	\$29.35	\$29.35	
Delay Savings Per incident	\$1,565.33	\$1,174.00	
Average # of monthly timing adjustments	23	23	
Delay savings per month	\$36,002.67	\$27,002.00	
Total Delay Savings in 2018	\$432,032.00	\$324,024.00	
		\$756,056.00	

3. Signal Outages

In order to calculate the time saved from MMC staff identifying signal outages, information was obtained from the data tracker and signal modeling software. In 2019, a total of 1982 signals went into flash mode during 6 am and 8 pm. Of those, approximately 38% (760 incidents) were identified by MMC staff before the issue was reported as a CSR. It is conservatively assumed that the MMC detects signal outages 15 minutes before a 3-1-1 call or another method.

That 15 minutes is critical in reducing the delay and queues that vehicles experience at the intersection. An analysis was performed to determine the delay incurred during a signal outage, using signal modeling. Total delay saved by MMC staff detecting a signal outage in 15 minutes was determined in this way.

Of the total recorded signal outage incidents in the City, the proportion of major-major, major-minor, and minor-minor was calculated from the data tracker. It was also assumed that signal outages occur evenly across the time-of-day periods analyzed (AM, Off-Peak, PM). The incident occurrence of the 779 signal outages is shown in table below.

Outage Frequency per Intersection Type and Time of Day						
	Major-Major	Major-Minor	Minor-Minor			
AM Peak	6	50	46			
Off Peak	31	251	230			
PM Peak	6	50	46			
Total	43	351	323			
		Grand Total	717			

Those categories were then modeled in VISSIM traffic software to estimate the extra vehicular delay caused by a 15-minute delay in detecting a signal outage. The delay for each of these signal outage scenarios is shown in table below. The location of the outage is important as more vehicles are affected at larger intersections and therefore more delay is incurred. This delay was also dependent on time of day. Delays during the AM and PM peak have a bigger impact on the total vehicular delay due to higher volumes.

Delay per	Delay per Intersection Type and Time of Day (Hrs)						
	Major-Major	Major-Minor	Minor-Minor				
AMPeak	172	32	29				
Off Peak	218	5	6				
PM Peak	289	74	56				

The typical delay for each of these occurrences was multiplied by the frequency to get a sum product of the total delay for 2019 signal outage incidents.

4. Remote Investigation and Response

To calculate cost savings from MMC staff remotely investigating and responding to citizen complaints, CSR records from 2019 were obtained from the data tracker. CSRs that were closed without dispatching a technician represented cost savings. The methodology assumed that 1.5 hours of technicians' time was spent per dispatch, including travel. Cost savings for signal engineers were also calculated, assuming they previously spent 0.5 hours investigating each CSR.

The savings from remote investigation were also calculated. This assumed that remote investigation saves technicians 0.5 hours troubleshooting in the field for every CSR resulting in a dispatch.

Remote Response Capabilities					
Total CSRs handled by TMC		11672			
Total CSRs that do not result in a dispatch		5530			
Total CSRs that result in a dispatch		6142			
Avg time spent by signal tech dispatch (incl. travel) (hr)		1.5			
Total time savings for signal tech (hrs) (No tech dispatched)		8295			
Loaded cost for signal tech (\$/hr)	\$	100.00			
Annual Technician Cost Savings (\$)	\$	829,500.00			
Total CSRs that would require signal engintervention		1615			
Avg time spent by signal eng to respond to a request (hr)		0.5			
Total time savings for signal eng (hrs) (with tech dispatch)		807.5			
Loaded cost for signal eng (\$/hr)	\$	125.00			
Annual Engineer Cost Savings (\$)	\$	50,468.75			
Response Cost Savings Subtotal (\$)	\$	879,968.75			
Remote Investigation Capabilities					
Total CSRs that result in a dispatch		6142			
Average time saved by signal tech troubleshooting (hrs)		0.5			
Total time savings for signal tech (hrs)		3071.0			
Loaded cost for signal tech (\$/hr)	\$	100.00			
Investigation Cost Savings Subtotal (\$)		307,100.00			
Grand Total		,187,068.75			