APPENDIX D
 AIR QUALITY AND NOISE TECHNICAL REPORT

THIS PAGE INTENTIONALLY LEFT BLANK

Austin Bergstrom International Airport Expansion and Development Program (AEDP) Environmental Assessment Noise \& Air Quality Technical Report

HMMH Report No. 307330.001
February 2022

Prepared for:
KSA Engineers Inc.
4833 Spicewood Springs Rd. Suite 204
Austin, TX 78759

Prepared by:
Timothy Middleton
Dominic Scarano
Vincent Ma
Phil DeVita
Scott Noel
Will Fraser

numine

HMMH
700 District Avenue, Suite 800
Burlington, MA 01803
T 781.229.0707
F 781.229.7939

Table of Contents

1. Introduction .. 7
2. Analysis .. 8
3. Noise Modeling Methodology and Inputs .. 10
3.1 Physical Description of the Airport Layout ... 10
3.2 Aircraft Operations .. 12
3.3 Aircraft Noise and Performance Characteristics ... 30
3.4 Runway Utilization... 40
3.5 Flight Track Geometry and Use ... 41
3.6 Meteorological Data .. 56
3.7 Aircraft Maintenance Run-up Activity .. 56
3.8 Terrain... 56
4. Noise Analysis Results... 56
4.1 DNL Contours.. 56
4.2 Grid Point Analysis.. 69
4.3 Population Inventory ... 72
5. Air Quality Analysis ... 74
5.1 Affected Environment.. 74
5.1.1 National Ambient Air Quality Standards... 74
5.1.2 Attainment Status .. 75
5.1.3 General Conformity Rule... 75
5.2 Environmental Consequences of Proposed Action ... 76
5.2.1 Methodology... 76
5.2.2 Construction Demolition and Construction Activities .. 76
5.2.3 Summary of Construction-Related Emissions.. 79
5.2.4 Direct and Indirect Operational Emissions .. 79
5.2.5 Aircraft Operational Activities... 80
5.2.6 New Central Utility Plant Operations.. 81
5.2.7 Additional Ground Access Vehicles and Parking Areas... 82
5.2.8 Significance Thresholds.. 83
5.2.9 No Action Alternative... 86
5.2.10 Mitigation.. 86
5.3 Climate... 86
5.3.1 Regulatory Framework... 87
5.3.2 Affected Environment... 87
5.3.3 Analysis Methodology.. 88
5.3.4 Environmental Consequences of Proposed Action Alternative..................................... 88
5.3.5 Environmental Consequences of No Action Alternative... 89

6. Aircraft Noise Terminology 90
6.1 Introduction to Noise Terminology 90
6.1.1 Sound Pressure Level, SPL, and the Decibel, dB 90
6.1.2 A-Weighted Decibel 91
6.1.3 Maximum A-Weighted Sound Level, $L_{\max }$ 93
6.1.4 Sound Exposure Level, SEL 94
6.1.5 Equivalent A-Weighted Sound Level, Leq. 95
6.1.6 Day-Night Average Sound Level, DNL or $L_{d n}$. 96
6.2 Aircraft Noise Effects on Human Activity 99
6.2.1 Speech Interference. 99
6.2.2 Sleep Interference 101
6.2.3 Community Annoyance. 101
6.3 Noise Propagation 103
6.3.1 Weather-Related Effects. 103
6.3.2 Influence of Humidity and Precipitation 103
6.3.3 Influence of Temperature 103
6.3.4 Influence of Wind 104
6.3.5 Distance-Related Effects 104
6.3.6 Vegetation-Related Effects 105
Appendix A - Emissions Calculations 106
List of Tables
Table 1. Runway Details 10
Table 2. Modeled Annual Aircraft Operations 12
Table 3. Fleet Retirements and Phase Outs for EA Forecast Years 12
Table 4. Modeled Average Daily Itinerant Aircraft Operations for 2027 Action Conditions 14
Table 5. Modeled Average Daily Itinerant Aircraft Operations for 2027 No Action Conditions 17
Table 6. Modeled Average Daily Itinerant Aircraft Operations for 2032 Action Conditions 20
Table 7. Modeled Average Daily Itinerant Aircraft Operations for 2032 No Action Conditions 23
Table 8. Modeled Average Daily Itinerant Aircraft Operations for 2037 Action Conditions 26
Table 9. Stagelengths by Trip Distance 30
Table 10. 2027 Action Conditions Modeled Departure Stagelength Usage by Aircraft Type 30
Table 11. 2027 No Action Conditions Modeled Departure Stagelength Usage by Aircraft Type 32
Table 12. 2032 Action Conditions Modeled Departure Stagelength Usage by Aircraft Type 34
Table 13. 2032 No Action Conditions Modeled Departure Stagelength Usage by Aircraft Type 36
Table 14. 2037 Action Conditions Modeled Departure Stagelength Usage by Aircraft Type 38
Table 15. 2027, 2032, and 2037 Runway Utilization 41
Table 16. 2027, 2032, and 2037 Runway Utilization for Fixed-Wing Aircraft (Circuits) 41
Table 17. Modeled Fixed-wing Flight Track Utilization 42

Table 18. FAA Thresholds for Significant or Reportable Changes in Noise 69
Table 19. Comparison of Noise Exposure 73
Table 20. National Ambient Air Quality Standards 75
Table 21. Proposed Action Construction and Demolition Activities 77
Table 22. Construction Emission Inventory - Proposed Action 79
Table 23. Operational Emissions Inventory of the Forecast No Action and Proposed Action Cases 81
Table 24. Operational Emissions Inventory of the Central Utility Plant 81
Table 25. Operational Emissions Inventory of the Additional Ground Access Vehicles 83
Table 26. Operational Emissions Inventory of the Additional Parking Areas 83
Table 27. Total Construction and Demolition Emissions Compared to De Minimis Thresholds 84
Table 28. Net Operational Emission Changes Compared to De Minimis Thresholds 85
Table 29. GHG Emissions Associated with Construction and Demolition for the Proposed Action 88
Table 30. GHG Emissions Associated with Operations for the Proposed Action. 89
Table 31. Dense Foliage Noise Attenuation 105
List of Figures
Figure 1. Existing AUS Airport Layout 11
Figure 2. Runway 36L Modeled Jet Tracks, North Flow 48
Figure 3: Runway 36R Modeled Jet Tracks, North Flow 49
Figure 4: Runway 18L Modeled Jet Tracks, South Flow 50
Figure 5: Runway 18R Modeled Jet Tracks, South Flow 51
Figure 6: Runway 36L Modeled Non-Jet Tracks, North Flow. 52
Figure 7: Runway 36R Modeled Non-Jet Tracks, North Flow 53
Figure 8: Runway 18L Modeled Non-Jet Tracks, South Flow 54
Figure 9: Runway 18R Modeled Non-Jet Tracks, South Flow 55
Figure 10. Existing Conditions (2019) DNL Contours 58
Figure 11. 2027 No-Action Alternative DNL Contours 59
Figure 12. 2027 Proposed Action DNL Contours 60
Figure 13. 2032 No-Action Alternative DNL Contours 61
Figure 14. 2032 Proposed Action DNL Contours 62
Figure 15. 2037 Proposed Action DNL Contours 63
Figure 16. 2019 Existing Conditions DNL Contours w/ Inset 64
Figure 17. 2027 No Action DNL Contours w/ Inset 65
Figure 18. 2027 Proposed Action DNL Contours w/ Inset 66
Figure 19. 2032 No Action DNL Contours w/ Inset 67
Figure 20. 2032 Proposed Action DNL Contours w/ Inset 68
Figure 21. Grid Point Differences Between Proposed Action and No Action for Forecast Year 2027 70
Figure 22. Grid Point Differences Between Proposed Action and No Action for Forecast Year 2032 71
Figure 23. A-Weighting Frequency Response 92
Figure 24. A-Weighted Sound Levels for Common Sounds 93
Figure 25. Variation in A-Weighted Sound Level over Time and Maximum Noise Level. 94

WWw.hmmh.com
Figure 26. Graphical Depiction of Sound Exposure Level 95
Figure 27. Example of a 15 -Second Equivalent Sound Level 96
Figure 28. Example of a Day-Night Average Sound Level Calculation 98
Figure 29. Examples of Measured Day-Night Average Sound Levels, DNL 99
Figure 30. Outdoor Speech Intelligibility 100
Figure 31. Sleep Interference 101
Figure 32. Percentage of People Highly Annoyed 102
Figure 33. Community Reaction as a Function of Outdoor DNL 102
Figure 34. Downward Refracting Sound Path 106

1. Introduction

Harris Miller Miller \& Hanson Inc. (HMMH) is assisting KSA Engineers with aircraft noise and emissions evaluations for the Environmental Assessment (EA) related to the Airport Expansion and Development Program (AEDP) at Austin Bergstrom International Airport (ABIA, or AUS), pursuant to the National Environmental Policy Act (NEPA). The purpose of this technical memorandum is to present the noise and air quality assessment approach, input data, assumptions, and draft results. This memorandum will serve as Appendix D in the final EA document.

The Proposed Action for this EA, also known as the AEDP, is meant to meet the needs of airlines and passengers at AUS through improving the Barbara Jordan Terminal and enabling future airport expansion with utility and airfield infrastructure. Initial construction projects include:

- Optimizing the Barbara Jordan Terminal
- Building a midfield concourse and connecting underground tunnel
- Creating and relocating taxiways
- A new Central Utility Plant
- A new electrical substation
- Removing existing airfield structures

The EA will evaluate a total of six scenarios:

1. Existing Conditions (2019)
2. 2027 No-Action Alternative
3. 2027 Proposed Action (AEDP) Alternative
4. 2032 No-Action Alternative
5. 2032 Proposed Action (AEDP) Alternative
6. 2037 Forecast year ${ }^{1}$

[^0]

Www.hmmh.com

The subsequent sections provide the methodology and model inputs for the noise and air quality analyses. Upon review and approval of the information in this technical memorandum, HMMH ran the FAA approved AEDT software model to estimate air quality and noise results from aircraft operations for the six modeling scenarios.

2. Analysis

The noise analysis for this EA will be conducted in accordance with Federal Aviation Administration (FAA) Order 1050.1F and its associated Environmental Desk Reference. These documents specify several requirements for evaluating noise impacts, including:

- Acceptable noise models to be used and the circumstances under which their use is required.
- The metrics to be used for characterizing the noise environment and quantifying impacts; and
- Thresholds of significance for determining whether the effects of an action would constitute a significant impact under NEPA.

For an action occurring on, or in the vicinity of a single airport, the Environmental Desk Reference directs the use of the latest version of the Aviation Environmental Design Tool (AEDT) for detailed noise modeling or another model, as approved by FAA. In this case, it is AEDT Version 3d. ${ }^{2}$ All AEDT modeling conducted for this study will adhere to "Guidance on Using the AEDT to Conduct Environmental modeling for FAA Actions Subject to NEPA". ${ }^{3}$ The model must be used to produce Day-Night Average Sound Level (DNL) contours of $65 \mathrm{~dB}, 70$ dB , and 75 dB , and others as needed. FAA considers a DNL of 65 dB as the threshold below which all land uses are compatible.

FAA Orders 1050.1F and 5050.4B determine a significant noise impact to be a DNL increase of 1.5 dB or more at a noise-sensitive location with a DNL of 65 dB or higher. For example, an increase from 63.5 dB to 65.0 dB DNL within the same timeframe due to the Proposed Project would be considered a significant impact. If a noise increase is determined to be a significant impact to any of the surrounding noise sensitive properties, as defined in FAA Order 1050.1F, mitigation would be required.

The FAA and NEPA guidance prescribes that aircraft noise studies should use DNL, this is the metric adopted by FAA and Environmental Protection Agency (EPA) as the most appropriate long-term measure of airport noise exposure. DNL is determined by adding up the noise energy from all modeled aircraft activity at every individual point of a large array of grid points around an airport. In the DNL calculation, a 10-decibel weighting is applied to nighttime ${ }^{4}$ operations.

Computer-generated estimates of DNL are often depicted as noise contours reflecting lines of equal exposure around an airport (much as topographic maps indicate contours of equal elevation). The contours usually reflect long-term (annual average) operating conditions, accounting for the average flights per day, how often each runway is used throughout the year, and where over the surrounding communities the aircraft normally fly.

The FAA requires that the following information must be disclosed for each modeled scenario that is analyzed:

- The number of residences or people exposed to DNL between 65 dB and $70 \mathrm{~dB}, 70 \mathrm{~dB}$ and 75 dB and greater than or equal to 75 dB , and the net increase or decrease in the number of people or residences exposed to those levels of noise.
- The location and number of noise sensitive uses in addition to residences (e.g., schools, hospitals, parks, recreation areas) exposed to DNL 65 dB or greater.

[^1]

- The identification of noise sensitive areas exposed to DNL greater than or equal to 60 dB and are projected to experience a DNL increase of 3 dB or more, only when 1.5 dB DNL increases are predicted at noise sensitive areas with DNL of at least 65 dB .
- Discussion of the noise impact on noise sensitive areas exposed to DNL of at least 65 dB ; and
- Mapping providing land use data, noise contours, and flight tracks for each scenario.
- If 1.5 dB DNL increases are predicted at noise sensitive areas with DNL of at least 65 dB , identification of noise sensitive areas exposed to DNL greater than or equal to 60 dB which may experience a DNL increase of 3 dB or more as a result of the Proposed Action.

3. Noise Modeling Methodology and Inputs

AEDT noise model inputs are developed under the following categories and are required to develop noise model results:

- Physical description of the airport layout
- Aircraft operations
- Aircraft noise and performance characteristics
- Runway utilization
- Aircraft maintenance runup activity
- Flight track geometry and usage
- Meteorological conditions
- Terrain data

3.1 Physical Description of the Airport Layout

AUS is located within Travis County, approximately five miles southeast of downtown Austin, TX. As shown in Figure 1.

Runway length, runway width, instrumentation, and declared distances do not directly affect noise calculations. However, these parameters may affect which aircraft might use a particular runway and under what conditions, and therefore how often a runway would be used relative to the other runways at the airport.

Table 1 provides the detailed parameters for each runway end. The proposed action does not include any changes or modifications to the Runways. However, the proposed action includes the creation and relocation of taxiways, which alter the taxi times for aircraft in both action alternative years.

Table 1. Runway Details
Sources: FAA Form 5010, accessed 8/1/2021

Runway End	Latitude (decimal degrees)	Longitude (decimal degrees)	Elevation (feet, MSL)	Displaced Landing Threshold (feet)	Glide Slope (degrees)	Threshold Crossing (feet, AGL)
18L	30.203830	-97.657891	491.6	0	3	74
18R	30.213616	-97.679365	541.4	0	3	60
36L	30.179943	-97.678475	487.3	0	3	60
36R	30.179091	-97.657243	473.6	0	3	59
H1	30.185475	-97.661006	541.5	N/A		
H2	30.187672	-97.661067	541.5			
H3	30.179486	-97.673208	479			

Figure 1. Existing AUS Airport Layout Source: FAA

3.2 Aircraft Operations

HMMH obtained flight track data from the AUS noise and operations monitoring system (NOMS) for calendar year 2019. The radar data was then scaled to the FAA reported tower counts for 20195, and to the Terminal Area Forecast (TAF) for the EA forecast years 2027,2032, and 2037 as shown in Table 2.

Table 2. Modeled Annual Aircraft Operations
Sources: FAA TAF, RS\&H 2021

Modeling Scenario	Air Carrier	Air Taxi	General Aviation		Military		Total
			Itinerant	Local	Itinerant	Local	
	180,504	15,895	43,971	685	4,782	239	246,076
2027 No Action	180,504	15,895	43,971	685	4,782	239	246,076
	209,788	16,801	44,755	690	4,782	240	277,056
2032 No Action	187,843	16,801	44,755	690	4,782	240	255,111
	241,106	17,761	45,553	803	4,782	134	310,139

Fleet changes provided by ABIA and RS\&H were applied to account for retiring and new entrant aircraft through the future scenarios as provided in Table 3

Table 3. Fleet Retirements and Phase Outs for EA Forecast Years

AEDT Type in Baseline	AEDT Type Replacement in Forecast	2027 and 2032 Changes
717200	A220-100	50% replaced in 2027 100% replaced in 2032
737400	737700	100% replaced in 2027
747400	A350	50% replaced in 2027 100% replaced in 2032
A320-211	A320-271N	10% replaced in 2027 15% replaced in 2032
DC1010	777 Freighter	100% replaced in 2027
DC1030	777 Freighter	100% replaced in 2027
MD11GE	777 Freighter	50% replaced 2032
MD11PW	777 Freighter	50% replaced 2032
MD83	A220-300	100% replaced in 2027

[^2]Operational changes, such as the addition of five new passenger international long-haul flights, were made based on the best available information. Other factors considered for growing baseline to the action scenarios also included:

- The FAA approved changes contained in the NEPA CATEX cargo expansions which are not included in the "planned growth" in the TAF. For the buildout year (2027) the aircraft listed in the CatEX were added. The proposed action calls for up to four (4) additional cargo operations to occur once the new cargo facility is constructed and fully operational. These operations are anticipated to be nighttime operations consisting of two 737-800s, one 767-300ER, and one 767-200.
- For the buildout year plus five (2032), all four of the additional cargo operations in 2027 are 767300ER.
- By 2032, the existing airfield aircraft parking area cannot accommodate the unconstrained growth forecast in the 2032 TAF
- To constrain the No Action alternative, RS\&H calculated what the enplanements translates to flights. The difference between the Action and No Action in 2032, is about 1.3 million passengers higher in the TAF. This yields an Average of 122 enplanements, or 10,912 operations, which is 30 departures (60 operations) a day that cannot be accommodated.
- The 2032 Action alternative was scaled down by 60 operations (30 arrivals / 30 departures); scaling was completed on only the air carrier flight to accommodate the TAF enplanements. No change to Air Taxi, General Aviation, or Military was applied to the 2032 Action Scenario.
- The 2037 Action alternative is the 2032 Action alternative scaled up to the 2037 TAF operations levels.

Table 4 through Table 8 present the Future Action and No Action Conditions cases of average daily operations by aircraft type for arrivals and departures for each modeling scenario. Note that general aviation circuit operations are representative of both general aviation and military circuit operations.

Table 4. Modeled Average Daily Itinerant Aircraft Operations for 2027 Action Conditions
Sources: AUS NOMS, HMMH

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Air Carrier	717200	305	81	325	60	0	0	772
	737400	0	0	0	0	0	0	0
	737700	20,359	5,403	21,729	4,033	0	0	51,524
	737800	15,141	4,418	16,160	3,463	0	0	39,245
	747400	108	29	115	21	0	0	274
	777200	25	7	26	5	0	0	62
	7378MAX	236	63	252	47	0	0	598
	757PW	23	6	24	4	0	0	57
	757RR	311	83	332	62	0	0	787
	7673ER	0	232	0	232	0	0	463
	767CF6	0	232	0	232	0	0	463
	7773ER	458	122	489	91	0	0	1,160
	7878R	103	27	110	20	0	0	260
	A300-622R	627	166	669	124	0	0	1,586
	A319-131	7,852	2,084	8,380	1,556	0	0	19,872
	A320-211	4,510	1,197	4,813	893	0	0	11,412
	A320-232	6,907	1,833	7,371	1,368	0	0	17,479
	A320-271N	1,957	519	2,089	388	0	0	4,952
	A321-232	4,991	1,324	5,327	989	0	0	12,631
	A330-343	174	46	186	34	0	0	440
	A350-941	29	115	21	0	0	274	108
	CRJ9-ER	756	201	807	150	0	0	1,914
	DC1010	0	0	0	0	0	0	0
	DC1030	0	0	0	0	0	0	0
	EMB170	1,682	446	1,795	333	0	0	4,256
	EMB175	2,643	701	2,821	524	0	0	6,690
	EMB190	1,069	284	1,141	212	0	0	2,705
	MD11GE	162	43	173	32	0	0	411
	MD11PW	86	23	92	17	0	0	217
	MD83	0	0	0	0	0	0	0
Subtotal		70,593	19,659	75,341	14,911	0	0	180,504
Air Taxi	BD-700-1A10	64	10	59	15	0	0	148
	BD-700-1A11	29	5	27	7	0	0	68

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Subtotal		2,201	190	2,313	78	0	0	4,782
Local General Aviation and Military	CNA172	0	0	0	0	641	45	685
	GASEPV	0	0	0	0	150	10	161
	GASEPF	0	0	0	0	73	5	78
Subtotal		0	0	0	0	864	60	924
Total		100,491	22,085	104,753	17,823	864	60	246,076

Table 5. Modeled Average Daily Itinerant Aircraft Operations for 2027 No Action Conditions
Sources: AUS NOMS, HMMH

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Air Carrier	717200	305	81	325	60	0	0	772
	737400	0	0	0	0	0	0	0
	737700	20,359	5,403	21,729	4,033	0	0	51,524
	737800	15,141	4,481	16,160	3,463	0	0	39,245
	747400	108	29	115	21	0	0	274
	777200	25	7	26	5	0	0	62
	7378MAX	236	63	252	47	0	0	598
	757PW	23	6	24	4	0	0	57
	757RR	311	83	332	62	0	0	787
	7673ER	0	232	0	232	0	0	463
	767CF6	0	232	0	232	0	0	463
	7773ER	458	122	489	91	0	0	1,160
	7878R	103	27	110	20	0	0	260
	A300-622R	627	166	669	124	0	0	1,586
	A319-131	7,852	2,084	8,380	1,556	0	0	19,872
	A320-211	4,510	1,197	4,813	893	0	0	11,412
	A320-232	6,907	1,833	7,371	1,368	0	0	17,479
	A320-271N	1,957	519	2,089	388	0	0	4,952
	A321-232	4,991	1,324	5,327	989	0	0	12,631
	A330-343	174	46	186	34	0	0	440
	A350-941	29	115	21	0	0	274	108
	CRJ9-ER	756	201	807	150	0	0	1,914
	DC1010	0	0	0	0	0	0	0
	DC1030	0	0	0	0	0	0	0
	EMB170	1,682	446	1,795	333	0	0	4,256

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	EMB175	2,643	701	2,821	524	0	0	6,690
	EMB190	1,069	284	1,141	212	0	0	2,705
	MD11GE	162	43	173	32	0	0	411
	MD11PW	86	23	92	17	0	0	217
	MD83	0	0	0	0	0	0	0
Subtotal		70,593	19,659	75,341	14,911	0	0	180,504
Air Taxi	BD-700-1A10	64	10	59	15	0	0	148
	BD-700-1A11	29	5	27	7	0	0	68
	CIT3	26	4	24	6	0	0	59
	CL600	730	115	674	170	0	0	1,690
	CL601	166	26	154	39	0	0	385
	CNA172	35	6	32	8	0	0	81
	CNA208	1,312	207	1,212	306	0	0	3,037
	CNA510	100	16	93	23	0	0	233
	CNA525C	81	13	75	19	0	0	187
	CNA55B	645	102	596	151	0	0	1,493
	CNA560U	106	17	98	25	0	0	245
	CNA560XL	598	94	553	140	0	0	1,386
	CNA680	547	86	506	128	0	0	1,267
	CNA750	710	112	656	166	0	0	1,644
	DHC6	325	51	301	76	0	0	753
	EMB145	58	9	54	14	0	0	135
	EMB14L	174	28	161	41	0	0	404
	FAL900EX	156	25	144	36	0	0	361
	G650ER	35	6	32	8	0	0	81
	GASEPV	38	6	35	9	0	0	88
	GIV	139	22	129	33	0	0	323
	GV	34	5	31	8	0	0	79
	IA1125	33	5	30	8	0	0	75
	LEAR35	607	96	561	142	0	0	1,406
	MU3001	116	18	107	27	0	0	269
Subtotal		6,864	1,084	6,345	1,603	0	0	15,895
Itinerant General Aviation	737700	23	1	23	1	0	0	49
	BD-700-1A10	120	7	120	7	0	0	254
	BD-700-1A11	33	2	33	2	0	0	70
	BEC58P	507	28	505	30	0	0	1,070
	CIT3	242	13	241	14	0	0	510

Table 6. Modeled Average Daily Itinerant Aircraft Operations for 2032 Action Conditions
Sources: AUS NOMS, HMMH

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Air Carrier	717200	0	0	0	0	0	0	0
	737400	0	0	0	0	0	0	0
	737700	24,017	6,373	25,632	4,758	0	0	60,780
	737800	17,598	4,670	18,781	3,486	0	0	44,535
	747400	0	0	0	0	0	0	0
	777200	29	8	30	6	0	0	72
	7378MAX	275	73	293	54	0	0	695
	757PW	26	7	28	5	0	0	66
	757RR	361	96	386	72	0	0	915
	7673ER	0	1,077	0	1,077	0	0	2,154
	7773ER	677	180	723	134	0	0	1,713
	7878R	119	32	128	24	0	0	302
	A300-622R	729	193	778	144	0	0	1,844
	A319-131	9,126	2,422	9,740	1,808	0	0	23,096
	A320-211	4,368	1,159	4,661	865	0	0	11,053
	A320-232	8,027	2,130	8,567	1,590	0	0	20,315
	A320-271N	3,148	835	3,360	624	0	0	7,967
	A321-232	5,801	1,539	6,191	1,149	0	0	14,680

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	A330-343	202	54	216	40	0	0	512
	A350-941	251	67	268	50	0	0	636
	CRJ9-ER	879	233	938	174	0	0	2,224
	DC1010	0	0	0	0	0	0	0
	DC1030	0	0	0	0	0	0	0
	EMB170	1,954	519	2,086	387	0	0	4,946
	EMB175	3,072	815	3,279	609	0	0	7,775
	EMB190	1,242	330	1,326	246	0	0	3,143
	MD11GE	94	25	101	19	0	0	239
	MD11PW	50	13	53	10	0	0	126
	MD83	0	0	0	0	0	0	0
Subtotal		82,045	22,849	87,564	17,330	0	0	209,788
Air Taxi	BD-700-1A10	67	11	62	16	0	0	156
	BD-700-1A11	31	5	29	7	0	0	72
	CIT3	27	4	25	6	0	0	63
	CL600	771	122	713	180	0	0	1,786
	CL601	176	28	163	41	0	0	407
	CNA172	37	6	34	9	0	0	85
	CNA208	1,386	219	1,281	324	0	0	3,210
	CNA510	106	17	98	25	0	0	246
	CNA525C	85	13	79	20	0	0	198
	CNA55B	682	108	630	159	0	0	1,578
	CNA560U	112	18	104	26	0	0	259
	CNA560XL	633	100	585	148	0	0	1,465
	CNA680	578	91	535	135	0	0	1,339
	CNA750	750	118	694	175	0	0	1,738
	DHC6	344	54	318	80	0	0	796
	EMB145	62	10	57	14	0	0	143
	EMB14L	184	29	170	43	0	0	427
	FAL900EX	165	26	152	38	0	0	382
	G650ER	37	6	34	9	0	0	85
	GASEPV	40	6	37	9	0	0	93
	GIV	147	23	136	34	0	0	341
	GV	36	6	33	8	0	0	83
	IA1125	34	5	32	8	0	0	80
	LEAR35	642	101	593	150	0	0	1,486
	MU3001	123	19	113	29	0	0	284

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Subtotal		7,255	1,145	6,707	1,694	0	0	16,801
Itinerant General Aviation	737700	24	1	23	1	0	0	50
	BD-700-1A10	122	7	122	7	0	0	258
	BD-700-1A11	34	2	34	2	0	0	72
	BEC58P	516	29	514	30	0	0	1,089
	CIT3	246	14	245	15	0	0	519
	CL600	501	28	500	30	0	0	1,058
	CL601	507	28	505	30	0	0	1,071
	CNA172	3,470	192	3,457	205	0	0	7,324
	CNA182	245	14	244	14	0	0	516
	CNA206	147	8	146	9	0	0	310
	CNA208	1,107	61	1,103	65	0	0	2,337
	CNA441	241	13	240	14	0	0	509
	CNA500	111	6	110	7	0	0	234
	CNA510	388	21	386	23	0	0	818
	CNA525C	1,358	75	1,353	80	0	0	2,867
	CNA55B	645	36	643	38	0	0	1,362
	CNA560U	506	28	504	30	0	0	1,068
	CNA560XL	622	34	620	37	0	0	1,313
	CNA680	371	21	370	22	0	0	783
	CNA750	583	32	581	34	0	0	1,231
	COMSEP	646	36	643	38	0	0	1,363
	DHC6	2,276	126	2,268	135	0	0	4,805
	ECLIPSE500	85	5	85	5	0	0	179
	EMB145	45	3	45	3	0	0	96
	FAL900EX	558	31	556	33	0	0	1,177
	G650ER	40	2	39	2	0	0	84
	GASEPF	736	41	734	44	0	0	1,554
	GASEPV	1,595	88	1,589	94	0	0	3,367
	GIIB	26	1	26	2	0	0	55
	GIV	450	25	449	27	0	0	951
	GV	263	15	262	16	0	0	555
	HS748A	33	2	33	2	0	0	70
	IA1125	200	11	200	12	0	0	423
	LEAR35	1,394	77	1,388	82	0	0	2,941
	MU3001	380	21	379	22	0	0	803
	PA28	477	26	476	28	0	0	1,007

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	PA30	42	2	42	2	0	0	89
	SA350D	196	11	196	12	0	0	415
	T-38A	16	1	15	1	0	0	33
Subtotal		21,204	1,173	21,124	1,254	0	0	44,755
Itinerant Military	CNA208	1,022	88	1,074	36	0	0	2,220
	T-38A	253	22	266	9	0	0	549
	CNA510	182	16	192	6	0	0	396
	MU3001	165	14	173	6	0	0	359
	S70	151	13	158	5	0	0	328
	B429	140	12	147	5	0	0	305
	DHC6	110	9	116	4	0	0	239
	A7D	92	8	97	3	0	0	200
	F18EF	48	4	51	2	0	0	105
	KC135R	38	3	40	1	0	0	82
Subtotal		2,201	190	2,313	78	0	0	4,782
Local General Aviation and Military	CNA172	0	0	0	0	645	45	690
	GASEPV	0	0	0	0	151	11	162
	GASEPF	0	0	0	0	73	5	78
Subtotal		0	0	0	0	870	60	930
Total		112,706	25,357	117,707	20,356	870	60	277,056

Table 7. Modeled Average Daily Itinerant Aircraft Operations for 2032 No Action Conditions
Sources: AUS NOMS, HMMH

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Air Carrier	717200	0	0	0	0	0	0	0
	737400	0	0	0	0	0	0	0
	737700	21,510	5,708	22,956	4,261	0	0	54,435
	737800	15,761	4,182	16,821	3,122	0	0	39,886
	747400	0	0	0	0	0	0	0
	777200	26	7	27	5	0	0	65
	7378MAX	246	65	262	49	0	0	622
	757PW	23	6	25	5	0	0	59
	757RR	324	86	345	64	0	0	819
	7673ER	0	964	0	964	0	0	1,929
	7773ER	606	161	647	120	0	0	1,534
	7878R	107	28	114	21	0	0	271

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	GASEPV	40	6	37	9	0	0	93
	GIV	147	23	136	34	0	0	341
	GV	36	6	33	8	0	0	83
	IA1125	34	5	32	8	0	0	80
	LEAR35	642	101	593	150	0	0	1,486
	MU3001	123	19	113	29	0	0	284
Subtotal		7,255	1,145	6,707	1,694	0	0	16,801
Itinerant General Aviation	737700	24	1	23	1	0	0	50
	BD-700-1A10	122	7	122	7	0	0	258
	BD-700-1A11	34	2	34	2	0	0	72
	BEC58P	516	29	514	30	0	0	1,089
	CIT3	246	14	245	15	0	0	519
	CL600	501	28	500	30	0	0	1,058
	CL601	507	28	505	30	0	0	1,071
	CNA172	3,470	192	3,457	205	0	0	7,324
	CNA182	245	14	244	14	0	0	516
	CNA206	147	8	146	9	0	0	310
	CNA208	1,107	61	1,103	65	0	0	2,337
	CNA441	241	13	240	14	0	0	509
	CNA500	111	6	110	7	0	0	234
	CNA510	388	21	386	23	0	0	818
	CNA525C	1,358	75	1,353	80	0	0	2,867
	CNA55B	645	36	643	38	0	0	1,362
	CNA560U	506	28	504	30	0	0	1,068
	CNA560XL	622	34	620	37	0	0	1,313
	CNA680	371	21	370	22	0	0	783
	CNA750	583	32	581	34	0	0	1,231
	COMSEP	646	36	643	38	0	0	1,363
	DHC6	2,276	126	2,268	135	0	0	4,805
	ECLIPSE500	85	5	85	5	0	0	179
	EMB145	45	3	45	3	0	0	96
	FAL900EX	558	31	556	33	0	0	1,177
	G650ER	40	2	39	2	0	0	84
	GASEPF	736	41	734	44	0	0	1,554
	GASEPV	1,595	88	1,589	94	0	0	3,367
	GIIB	26	1	26	2	0	0	55
	GIV	450	25	449	27	0	0	951

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	GV	263	15	262	16	0	0	555
	HS748A	33	2	33	2	0	0	70
	IA1125	200	11	200	12	0	0	423
	LEAR35	1,394	77	1,388	82	0	0	2,941
	MU3001	380	21	379	22	0	0	803
	PA28	477	26	476	28	0	0	1,007
	PA30	42	2	42	2	0	0	89
	SA350D	196	11	196	12	0	0	415
	T-38A	16	1	15	1	0	0	33
Subtotal		21,204	1,173	21,124	1,254	0	0	44,755
Itinerant Military	CNA208	1,022	88	1,074	36	0	0	2,220
	T-38A	253	22	266	9	0	0	549
	CNA510	182	16	192	6	0	0	396
	MU3001	165	14	173	6	0	0	359
	S70	151	13	158	5	0	0	328
	B429	140	12	147	5	0	0	305
	DHC6	110	9	116	4	0	0	239
	A7D	92	8	97	3	0	0	200
	F18EF	48	4	51	2	0	0	105
	KC135R	38	3	40	1	0	0	82
Subtotal		2,201	190	2,313	78	0	0	4,782
Local General Aviation and Military	CNA172	0	0	0	0	645	45	690
	GASEPV	0	0	0	0	151	11	162
	GASEPF	0	0	0	0	73	5	78
Subtotal		0	0	0	0	870	60	930
Total		104,141	22,972	108,566	18,502	870	60	255,111

Table 8. Modeled Average Daily Itinerant Aircraft Operations for 2037 Action Conditions
Sources: AUS NOMS, HMMH

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
Air Carrier	717200	0	0	0	0	0	0	0
	737400	0	0	0	0	0	0	0
	737700	27,602	7,325	29,459	5,468	0	0	69,853
	737800	20,225	5,367	21,585	4,007	0	0	51,183
	747400	0	0	0	0	0	0	0
	777200	33	9	35	7	0	0	83

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	CNA750	793	125	733	185	0	0	1,837
	DHC6	363	57	336	85	0	0	841
	EMB145	65	10	60	15	0	0	151
	EMB14L	195	31	180	45	0	0	451
	FAL900EX	174	28	161	41	0	0	403
	G650ER	39	6	36	9	0	0	90
	GASEPV	43	7	39	10	0	0	98
	GIV	156	25	144	36	0	0	361
	GV	38	6	35	9	0	0	88
	IA1125	36	6	34	8	0	0	84
	LEAR35	678	107	627	158	0	0	1,571
	MU3001	130	20	120	30	0	0	300
	Subtotal	7,670	1,211	7,090	1,791	0	0	17,761
Itinerant General Aviation	737700	24	1	24	1	0	0	51
	BD-700-1A10	125	7	124	7	0	0	263
	BD-700-1A11	34	2	34	2	0	0	73
	BEC58P	525	29	523	31	0	0	1,108
	CIT3	250	14	249	15	0	0	528
	CL600	510	28	508	30	0	0	1,077
	CL601	516	29	514	31	0	0	1,090
	CNA172	3,532	195	3,518	209	0	0	7,455
	CNA182	249	14	248	15	0	0	526
	CNA206	150	8	149	9	0	0	316
	CNA208	1,127	62	1,123	67	0	0	2,379
	CNA441	246	14	245	15	0	0	518
	CNA500	113	6	112	7	0	0	238
	CNA510	395	22	393	23	0	0	833
	CNA525C	1,383	77	1,377	82	0	0	2,918
	CNA55B	657	36	654	39	0	0	1,386
	CNA560U	515	28	513	30	0	0	1,087
	CNA560XL	633	35	631	37	0	0	1,336
	CNA680	378	21	376	22	0	0	797
	CNA750	593	33	591	35	0	0	1,253
	COMSEP	657	36	655	39	0	0	1,387
	DHC6	2,317	128	2,308	137	0	0	4,890
	ECLIPSE500	87	5	86	5	0	0	183
	EMB145	46	3	46	3	0	0	97

Category	AEDT Type	Arrivals		Departures		Circuits		Total
		Day	Night	Day	Night	Day	Night	
	FAL900EX	568	31	566	34	0	0	1,198
	G650ER	40	2	40	2	0	0	85
	GASEPF	750	41	747	44	0	0	1,582
	GASEPV	1,624	90	1,617	96	0	0	3,427
	GIIB	26	1	26	2	0	0	56
	GIV	458	25	457	27	0	0	967
	GV	268	15	267	16	0	0	565
	HS748A	34	2	34	2	0	0	72
	IA1125	204	11	203	12	0	0	431
	LEAR35	1,418	78	1,413	84	0	0	2,994
	MU3001	387	21	386	23	0	0	817
	PA28	486	27	484	29	0	0	1,025
	PA30	43	2	43	3	0	0	90
	SA350D	200	11	199	12	0	0	422
	T-38A	16	1	16	1	0	0	33
Subtotal		21,582	1,194	21,501	1,276	0	0	45,553
Itinerant Military	CNA208	1,022	88	1,074	36	0	0	2,220
	T-38A	253	22	266	9	0	0	549
	CNA510	182	16	192	6	0	0	396
	MU3001	165	14	173	6	0	0	359
	S70	151	13	158	5	0	0	328
	B429	140	12	147	5	0	0	305
	DHC6	110	9	116	4	0	0	239
	A7D	92	8	97	3	0	0	200
	F18EF	48	4	51	2	0	0	105
	KC135R	38	3	40	1	0	0	82
Subtotal		2,201	190	2,313	78	0	0	4,782
Local General Aviation and Military	CNA172	0	0	0	0	650	45	695
	GASEPV	0	0	0	0	153	11	163
	GASEPF	0	0	0	0	74	5	79
Subtotal		0	0	0	0	876	61	937
Total		125,747	28,854	131,539	23,062	876	61	310,139

3.3 Aircraft Noise and Performance Characteristics

AEDT requires the use of specific noise and performance data for each aircraft type operating at the Airport. Noise data are specified in the form of Sound Exposure Level (SEL) at a range of distances (from 200 feet to 25,000 feet) from a receiver on the ground to a particular aircraft with engines operating at a range of thrust levels. Performance data include thrust, speed and altitude profiles for takeoff and landing operations. The AEDT automatically accesses the noise and performance data for takeoff and landing operations by those aircraft types.

Within the AEDT database, aircraft departure profiles are defined by a range of trip distances identified as "stage lengths." Higher stage lengths (longer trip distances) are associated with heavier aircraft due to the increase in fuel requirements for the flight. For example, a departure aircraft with a trip distance less than 500 Nautical Miles (nmi) would be assigned a stagelength value of one, where a departure aircraft with a trip distance of $3,000 \mathrm{nmi}$ would be assigned a stagelength value of five. The noise calculations presented in this document used the standard AEDT departure profiles. Table 9 provides the stagelength classifications by their associated trip distances. Table 10, Table 11 Table 12,Table 13, and Table 14 show the 2027, 2032, and 2037 Modeled Departure Stagelength Usage by Aircraft Type. Forecast year 2037 only consists of an action case for informational purposes.

Table 9. Stagelengths by Trip Distance

Stagelength	Trip Distance (nmi)
1	$0-500$
2	$501-1,000$
3	$1,001-1,500$
4	$1,501-2,500$
5	$2,501-3,500$
6	$3,501-4,500$
7	$4,501-5,500$
8	$5,501-6,500$
9	$6,501+$

Table 10. 2027 Action Conditions Modeled Departure Stagelength Usage by Aircraft Type

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
1900D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
717200	1\%	99\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737700	37\%	45\%	18\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737800	27\%	38\%	33\%	2\%	0\%	0\%	0\%	0\%	0\%	100\%
7378MAX	39\%	34\%	27\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
747400	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
757PW	74\%	22\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757RR	80\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
767300	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
7673ER	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
767CF6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
777200	54\%	0\%	0\%	0\%	0\%	46\%	0\%	0\%	0\%	100\%
7773ER	2\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	0\%	100\%
7878R	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	100\%
A300-622R	56\%	44\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A319-131	7\%	65\%	27\%	1\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-211	2\%	31\%	53\%	14\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-232	10\%	50\%	40\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-271N	5\%	58\%	34\%	3\%	0\%	0\%	0\%	0\%	0\%	100\%
A321-232	35\%	56\%	8\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A330-343	1\%	1\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	100\%
A350-941	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
BD-700-1A10	30\%	26\%	35\%	3\%	0\%	4\%	2\%	0\%	0\%	100\%
BD-700-1A11	33\%	26\%	36\%	3\%	0\%	2\%	0\%	0\%	0\%	100\%
BEC58P	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CIT3	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL600	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL601	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA172	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA182	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA206	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA208	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA441	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA500	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA510	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA525C	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA55B	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560U	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560XL	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA680	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA750	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
COMSEP	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CRJ9-ER	4\%	60\%	36\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC830	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
ECLIPSE500	66\%	34\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB145	61\%	24\%	14\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB14L	82\%	17\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB170	23\%	30\%	46\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB175	12\%	12\%	76\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB190	1\%	32\%	68\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
FAL900EX	57\%	20\%	19\%	4\%	0\%	0\%	0\%	0\%	0\%	100\%
G650ER	31\%	15\%	43\%	3\%	3\%	4\%	0\%	0\%	0\%	100\%
GASEPF	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GASEPV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIIB	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
HS748A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
IA1125	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
LEAR35	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11GE	99\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11PW	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MU3001	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA28	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA30	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
SA350D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
T-38A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

Table 11. 2027 No Action Conditions Modeled Departure Stagelength Usage by Aircraft Type

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
1900D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
717200	1\%	99\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737700	37\%	45\%	18\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737800	27\%	38\%	33\%	2\%	0\%	0\%	0\%	0\%	0\%	100\%
7378MAX	39\%	34\%	27\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
747400	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
757PW	74\%	22\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757RR	80\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
767300	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
7673ER	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
767CF6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
777200	54\%	0\%	0\%	0\%	0\%	46\%	0\%	0\%	0\%	100\%
7773ER	2\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	0\%	100\%
7878R	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	100\%
A300-622R	56\%	44\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A319-131	7\%	65\%	27\%	1\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-211	2\%	31\%	53\%	14\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-232	10\%	50\%	40\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-271N	5\%	58\%	34\%	3\%	0\%	0\%	0\%	0\%	0\%	100\%
A321-232	35\%	56\%	8\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A330-343	1\%	1\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	100\%
A350-941	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
BD-700-1A10	30\%	26\%	35\%	3\%	0\%	4\%	2\%	0\%	0\%	100\%
BD-700-1A11	33\%	26\%	36\%	3\%	0\%	2\%	0\%	0\%	0\%	100\%
BEC58P	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CIT3	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL600	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL601	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA172	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA182	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA206	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA208	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA441	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA500	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA510	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA525C	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA55B	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560U	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560XL	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA680	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA750	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
COMSEP	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CRJ9-ER	4\%	60\%	36\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC830	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
ECLIPSE500	66\%	34\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
EMB145	61\%	24\%	14\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB14L	82\%	17\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB170	23\%	30\%	46\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB175	12\%	12\%	76\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB190	1\%	32\%	68\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
FAL900EX	57\%	20\%	19\%	4\%	0\%	0\%	0\%	0\%	0\%	100\%
G650ER	31\%	15\%	43\%	3\%	3\%	4\%	0\%	0\%	0\%	100\%
GASEPF	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GASEPV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIIB	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
HS748A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
IA1125	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
LEAR35	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11GE	99\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11PW	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MU3001	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA28	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA30	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
SA350D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
T-38A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

Table 12. 2032 Action Conditions Modeled Departure Stagelength Usage by Aircraft Type

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
1900D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
717200	1\%	99\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737700	37\%	45\%	18\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737800	27\%	38\%	33\%	2\%	0\%	0\%	0\%	0\%	0\%	100\%
7378MAX	39\%	34\%	27\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757PW	74\%	22\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757RR	80\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
767300	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
7673ER	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
777200	54\%	0\%	0\%	0\%	0\%	46\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
7773ER	2\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	0\%	100\%
7878R	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	100\%
A300-622R	56\%	44\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A319-131	7\%	65\%	27\%	1\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-211	2\%	31\%	53\%	14\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-232	10\%	50\%	40\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-271N	5\%	58\%	34\%	3\%	0\%	0\%	0\%	0\%	0\%	100\%
A321-232	35\%	56\%	8\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A330-343	1\%	1\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	100\%
A350-941	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
BD-700-1A10	30\%	26\%	35\%	3\%	0\%	4\%	2\%	0\%	0\%	100\%
BD-700-1A11	33\%	26\%	36\%	3\%	0\%	2\%	0\%	0\%	0\%	100\%
BEC58P	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CIT3	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL600	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL601	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA172	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA182	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA206	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA208	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA441	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA500	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA510	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA525C	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA55B	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560U	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560XL	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA680	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA750	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
COMSEP	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CRJ9-ER	4\%	60\%	36\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC830	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
ECLIPSE500	66\%	34\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB145	61\%	24\%	14\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB14L	82\%	17\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB170	23\%	30\%	46\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
EMB175	12\%	12\%	76\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB190	1\%	32\%	68\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
FAL900EX	57\%	20\%	19\%	4\%	0\%	0\%	0\%	0\%	0\%	100\%
G650ER	31\%	15\%	43\%	3\%	3\%	4\%	0\%	0\%	0\%	100\%
GASEPF	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GASEPV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIIB	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
HS748A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
IA1125	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
LEAR35	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11GE	99\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11PW	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MU3001	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA28	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA30	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
SA350D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
T-38A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

Table 13. 2032 No Action Conditions Modeled Departure Stagelength Usage by Aircraft Type

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
1900D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
717200	1\%	99\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737700	37\%	45\%	18\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737800	27\%	38\%	33\%	2\%	0\%	0\%	0\%	0\%	0\%	100\%
7378MAX	39\%	34\%	27\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757PW	74\%	22\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757RR	80\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
767300	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
7673ER	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
777200	54\%	0\%	0\%	0\%	0\%	46\%	0\%	0\%	0\%	100\%
7773ER	2\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	0\%	100\%
7878R	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	100\%
A300-622R	56\%	44\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
A319-131	7\%	65\%	27\%	1\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-211	2\%	31\%	53\%	14\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-232	10\%	50\%	40\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-271N	5\%	58\%	34\%	3\%	0\%	0\%	0\%	0\%	0\%	100\%
A321-232	35\%	56\%	8\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A330-343	1\%	1\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	100\%
A350-941	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
BD-700-1A10	30\%	26\%	35\%	3\%	0\%	4\%	2\%	0\%	0\%	100\%
BD-700-1A11	33\%	26\%	36\%	3\%	0\%	2\%	0\%	0\%	0\%	100\%
BEC58P	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CIT3	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL600	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL601	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA172	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA182	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA206	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA208	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA441	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA500	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA510	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA525C	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA55B	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560U	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560XL	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA680	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA750	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
COMSEP	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CRJ9-ER	4\%	60\%	36\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC830	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
ECLIPSE500	66\%	34\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB145	61\%	24\%	14\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB14L	82\%	17\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB170	23\%	30\%	46\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB175	12\%	12\%	76\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB190	1\%	32\%	68\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
FAL900EX	57\%	20\%	19\%	4\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
G650ER	31\%	15\%	43\%	3\%	3\%	4\%	0\%	0\%	0\%	100\%
GASEPF	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GASEPV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIIB	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
HS748A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
IA1125	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
LEAR35	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11GE	99\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11PW	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MU3001	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA28	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA30	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
SA350D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
T-38A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

Table 14. 2037 Action Conditions Modeled Departure Stagelength Usage by Aircraft Type

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
1900D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
717200	1\%	99\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737700	37\%	45\%	18\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
737800	27\%	38\%	33\%	2\%	0\%	0\%	0\%	0\%	0\%	100\%
7378MAX	39\%	34\%	27\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757PW	74\%	22\%	4\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
757RR	80\%	20\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
767300	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
7673ER	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
777200	54\%	0\%	0\%	0\%	0\%	46\%	0\%	0\%	0\%	100\%
7773ER	2\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	0\%	100\%
7878R	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	0\%	100\%
A300-622R	56\%	44\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A319-131	7\%	65\%	27\%	1\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-211	2\%	31\%	53\%	14\%	0\%	0\%	0\%	0\%	0\%	100\%
A320-232	10\%	50\%	40\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
A320-271N	5\%	58\%	34\%	3\%	0\%	0\%	0\%	0\%	0\%	100\%
A321-232	35\%	56\%	8\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
A330-343	1\%	1\%	0\%	0\%	0\%	0\%	98\%	0\%	0\%	100\%
A350-941	0\%	4\%	0\%	0\%	0\%	96\%	0\%	0\%	0\%	100\%
BD-700-1A10	30\%	26\%	35\%	3\%	0\%	4\%	2\%	0\%	0\%	100\%
BD-700-1A11	33\%	26\%	36\%	3\%	0\%	2\%	0\%	0\%	0\%	100\%
BEC58P	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CIT3	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL600	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CL601	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA172	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA182	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA206	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA208	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA441	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA500	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA510	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA525C	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA55B	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560U	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA560XL	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA680	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CNA750	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
COMSEP	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
CRJ9-ER	4\%	60\%	36\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC6	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
DHC830	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
ECLIPSE500	66\%	34\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB145	61\%	24\%	14\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB14L	82\%	17\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB170	23\%	30\%	46\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB175	12\%	12\%	76\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
EMB190	1\%	32\%	68\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
FAL900EX	57\%	20\%	19\%	4\%	0\%	0\%	0\%	0\%	0\%	100\%
G650ER	31\%	15\%	43\%	3\%	3\%	4\%	0\%	0\%	0\%	100\%
GASEPF	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GASEPV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

AEDT Type	Stagelength									Total
	1	2	3	4	5	6	7	8	9	
GIIB	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GIV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
GV	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
HS748A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
IA1125	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
LEAR35	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11GE	99\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MD11PW	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
MU3001	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA28	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
PA30	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
SA350D	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%
T-38A	100\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	100\%

3.4 Runway Utilization

The primary factor affecting runway use at airports is weather; specifically, the wind direction and wind speed. An additional factor that may affect runway use includes the position of the facility or ramp relative to the runway.

HMMH utilized 2019 data obtained from the AUS NOMS to compile runway use tables and categorized this information by arrival, departure, or circuits, as well as day and night. In 2019, the two runways were designated as: Runway 17L/35R and Runway 17R/35L, due to a shift in magnetic heading in 2020 the Runways were renamed to the current Runway 18L/36R and Runway 18R/36L. The current magnetic headings of the Runways are used for the 2027, 2032, and 2037 modeling scenarios. HMMH separated the data into jet and non-jet categories since these categories of aircraft types may use the runways differently due to the performance characteristics of the aircraft. Runway utilization remains the same from baseline for all modeling scenarios as shown in Table 15.

Table 15. 2027, 2032, and 2037 Runway Utilization
Source: AUS NOMS, HMMH

Aircraft Category	Runway	Arrival		Departure	
		Day	Night	Day	Night
Jet	36R	19\%	15\%	19\%	13\%
	36L	16\%	18\%	16\%	18\%
	18R	35\%	44\%	27\%	32\%
	18L	30\%	24\%	39\%	37\%
	Total	100\%	100\%	100\%	100\%
Non-Jet	36R	33\%	15\%	34\%	11\%
	36L	4\%	10\%	2\%	20\%
	18R	7\%	39\%	3\%	49\%
	18L	56\%	36\%	61\%	20\%
	Total	100\%	100\%	100\%	100\%
All Aircraft	36R	21\%	15\%	21\%	13\%
	36L	15\%	17\%	15\%	18\%
	18R	31\%	43\%	23\%	34\%
	18L	33\%	24\%	41\%	35\%
	Total	100\%	100\%	100\%	100\%
Note: The three helipads are assumed to have equal use.					

Table 16. 2027, 2032, and 2037 Runway Utilization for Fixed-Wing Aircraft (Circuits)

Aircraft Category	Runway	Day	Night
Non-Jet	$35 R$	18%	14%
	35 L	22%	18%
	$17 R$	28%	25%
	17 L	32%	43%
	Total	100%	100%

3.5 Flight Track Geometry and Use

In addition to runway usage, radar data from the AUS NOMS provided an ideal source of information for identifying where aircraft fly and how often they use specific flight corridors in the vicinity of the airport. In the development of the AUS EA, sets of prototypical flight tracks were defined for noise modeling. Known as "backbones," these tracks follow the central tendency of more dispersed paths flown by aircraft along each major flight corridor. Additional model tracks were created to either side of the backbones to account for the

dispersion within each corridor, and traffic is distributed normally ${ }^{6}$ onto each track group to reflect the spreading of noise along the corridor.

Aircraft are assigned to specific modeling tracks based on historical averages determined through analysis of the radar data. Knowledge of destinations for departures from the airport or points of origin for arrivals to the airport are also considered. The standard procedure for model track development entails separating tracks by operation type, (e.g., arrival or departure), propulsion type (e.g., jet, or non-jet), and runway end. HMMH analyzed flight tracks with the same operation type, runway end, and propulsion type for similar geometry and this resulted in the final flight track bundles used to create model tracks.

Model flight tracks are labeled with a number following the designations distinguishing tracks that take different routes from the same runway end. For example, flight track A17LJ01 identifies an arrival flight track (A, as opposed to D if it were a departure) from Runway 17L (17L), the primary aircraft type, (J for jet, NJ for non-jet), and finally the number at the end of the track name differentiates it from others in its group (or bundle). As mentioned in Section 3.4, 2019 radar data utilized the old naming convention for the Runways. This is reflected in the bundling and flight track development but does not impact or change noise modeling as these flight tracks will be modeled on the current Runway name, and geographic coordinates for the 2027, 2032, and 2037 scenarios

All fixed-wing aircraft flight tracks start or end at runway ends. Helicopter tracks generally start and end at a defined helipad and thus are modeled as flights to and from the helipad. Due to the limited amount of helicopter and circuit flight track data contained in the NOMS, circuit tracks will be represented by generic pattern tracks on each runway, and helicopter tracks will be represented by north, south, east, and west straight-in and straight-out tracks from each helipad.

Table 17 presents the modeled flight track usage rates by runway end and aircraft type category, for fixedwing arrivals and departures. There are no known changes to flight procedures expected at AUS as of February 2022, therefore the same flight track utilization will be used through all the future scenarios.

Figure 2 through Figure 9 present the modeled flight track geometry, jet, and non-jet flight activity based on Runway end operation in both north flow (aircraft arrive from the south and depart to the north), and south flow (aircraft arrive from the north and depart to the south) conditions. These tracks were developed using calendar year 2019 data from the AUS NOMS. Underlaying the modeled flight tracks are the radar tracks from the NOMS.

Table 17. Modeled Fixed-wing Flight Track Utilization
Source: AUS NOMS, HMMH

Aircraft Type	Operation Type	Runway	Bundle Name	Percent
Jet	Arrivals	17L	A17L01	1.2\%
			A17LJ02	1.0\%
			A17LJ03	40.0\%
			A17LJ04	1.4\%
			A17L05	1.8\%
			A17L06	14.5\%
			A17L.07	19.1\%
			A17L08	8.3\%
			A17L09	8.2\%

[^3]

Aircraft Type	Operation Type	Runway	Bundle Name	Percent
			A17L10	1.4\%
			A17L11	2.5\%
			A17LI2	0.6\%
			Total	100.0\%
Non-Jet			A17LNJ01	11.7\%
			A17LNJ02	8.8\%
			A17LNJ03	12.5\%
			A17LNJ04	7.3\%
			A17LNJ05	5.3\%
			A17LNJ06	15.9\%
			A17LNJ07	13.1\%
			A17LNJ08	10.1\%
			A17LNJ09	6.1\%
			A17LNJ10	6.2\%
			A17LNJ11	2.8\%
			Total	100.0\%
Jet	Departures		D17LJ01	0.5\%
			D17LJ02	9.4\%
			D17LJ03	46.9\%
			D17LJ04	5.5\%
			D17LJ05	0.2\%
			D17LJ06	3.2\%
			D17L07	6.5\%
			D17LJ08	2.8\%
			D17L09	3.4\%
			D17L10	9.9\%
			D17L11	11.7\%
			Total	100.0\%
Non-Jet			D17LNJ01	6.8\%
			D17LNJ02	10.8\%
			D17LNJ03	3.6\%
			D17LNJ04	2.8\%
			D17LNJ05	15.6\%
			D17LNJ06	11.0\%
			D17LNJ07	2.2\%
			D17LNJ08	8.0\%
			D17LNJ09	4.2\%
			D17LNJ10	5.7\%

			D17LNJ11	17.2\%
			D17LNJ12	12.2\%
			Total	100.0\%
			A17RJ01	2.3\%
			A17RJ02	2.8\%
			A17RJ03	3.6\%
			A17RJ04	36.8\%
			A17RJ05	5.1\%
			A17RJ06	2.5\%
Jet			A17RJ07	30.7\%
			A17RJ08	1.7\%
			A17RJ09	0.7\%
	Arrivals		A17RJ10	13.5\%
	Arrivals		A17RJ11	0.2\%
			A17RJ12	0.2\%
			Total	100.0\%
			A17RNJ01	2.8\%
			A17RNJ02	31.7\%
			A17RNJ03	13.0\%
Non-Jet			A17RNJ04	7.7\%
		17R	A17RNJ05	13.5\%
			A17RNJ06	31.3\%
			Total	100.0\%
			D17RJ01	0.3\%
			D17RJ02	12.1\%
			D17RJ03	1.0\%
			D17RJ04	0.2\%
			D17RJ05	3.2\%
Jet			D17RJ06	0.6\%
Jet			D17RJ07	32.7\%
	Departures		D17RJ08	7.0\%
			D17RJ09	8.7\%
			D17RJ10	33.5\%
			D17RJ11	0.7\%
			Total	100.0\%
Non-Jet			D17RNJ01	2.3\%
			D17RNJ02	41.5\%
			D17RNJ03	17.1\%

Aircraft Type	Operation Type	Runway	Bundle Name	Percent
			D17RNJ04	25.9\%
			D17RNJ05	10.8\%
			D17RNJ06	2.4\%
			Total	100.0\%
Jet	Arrivals	35L	A35LJ01	27.1\%
			A35LJ02	28.1\%
			A35L03	2.6\%
			A35L04	1.6\%
			A35L05	1.3\%
			A35L06	20.7\%
			A35L07	2.0\%
			A35L08	15.5\%
			A35L09	0.6\%
			A35L10	0.2\%
			A35L11	0.3\%
			Total	100.0\%
Non-Jet			A35LNJ01	12.6\%
			A35LNJ02	6.5\%
			A35LNJ03	5.0\%
			A35LNJ04	29.1\%
			A35LNJ05	44.0\%
			A35LNJ06	2.7\%
			Total	100.0\%
Jet	Departures		D35LJ01	0.5\%
			D35L.02	0.4\%
			D35LJ03	11.3\%
			D35L.04	0.3\%
			D35L.05	2.9\%
			D35L06	38.5\%
			D35LJ07	6.4\%
			D35L.08	39.5\%
			Total	100.0\%
Non-Jet			D35LNJ01	3.5\%
			D35LNJ02	41.8\%
			D35LNJ03	14.2\%
			D35LNJ04	36.9\%
			D35LNJ05	3.5\%
			Total	100.0\%

www.hmmh.com

Aircraft Type	Operation Type	Runway	Bundle Name	Percent
Jet	Arrivals	35R	A35RJ01	7.9\%
			A35RJ02	1.6\%
			A35RJ03	1.0\%
			A35RJ04	2.7\%
			A35RJ05	47.1\%
			A35RJ06	2.8\%
			A35RJ07	2.0\%
			A35RJ08	33.4\%
			A35RJ09	0.6\%
			A35RJ10	0.3\%
			A35RJ11	0.3\%
			A35RJ12	0.1\%
			A35RJ13	0.1\%
			Total	100.0\%
			A35RNJ01	2.3\%
			A35RNJ02	12.0\%
			A35RNJ03	7.4\%
			A35RNJ04	7.1\%
			A35RNJ05	4.8\%
			A35RNJ06	9.7\%
Non-J			A35RNJ07	12.2\%
			A35RNJ08	12.8\%
			A35RNJ09	7.8\%
			A35RNJ10	6.7\%
			A35RNJ11	17.4\%
			Total	100.0\%
Jet	Departures		D35RJ01	0.5\%
			D35RJ02	10.9\%
			D35RJ03	1.2\%
			D35RJ04	66.0\%
			D35RJ05	1.8\%
			D35RJ06	3.5\%
			D35RJ07	3.2\%
			D35RJ08	2.4\%
			D35RJ09	0.4\%
			D35RJ10	9.8\%
			D35RJ11	0.2\%
			Total	100.0\%

Figure 2. Runway 36L Modeled Jet Tracks, North Flow
\qquad

Figure 3: Runway 36R Modeled Jet Tracks, North Flow

Figure 4: Runway 18L Modeled Jet Tracks, South Flow

Figure 5: Runway 18R Modeled Jet Tracks, South Flow

Figure 6: Runway 36L Modeled Non-Jet Tracks, North Flow

Figure 7: Runway 36R Modeled Non-Jet Tracks, North Flow

Figure 8: Runway 18L Modeled Non-Jet Tracks, South Flow

Figure 9: Runway 18R Modeled Non-Jet Tracks, South Flow

3.6 Meteorological Data

Meteorological settings within the AEDT affect its calculation of aircraft performance profiles and sound propagation. These settings include average annual temperature, barometric pressure, relative humidity, and average headwind speed. The AEDT contains standard reference climatological data for airports throughout the US.

The noise modeling will utilize the following average data for AUS from the AEDT database:

- Temperature: 68.58 F
- Station Pressure: 998.08 mbar
- Sea Level Pressure: 1016.02 mbar
- Dew point: $57.52^{\circ} \mathrm{F}$
- Relative humidity: 67.93\%

The headwind speed will be set to the AEDT default of 6.81 knots.

3.7 Aircraft Maintenance Run-up Activity

HMMH was provided a maintenance run-up log from ABIA staff. This log showed that 22 Run-ups were logged by ABIA operations staff in 2019. Aircraft run-ups all occur on the Maintenance Ramp located to the East of Taxiway C, South of Taxiway H, between Taxiway S and Taxiway T. This location is roughly centered between the two Runways and is centrally located South of the main terminal complex. As such, run-up activity will likely not have any influence on the 65 DNL contour. Because of this, run-ups will not be modeled for this EA.

3.8 Terrain

Terrain data describes the elevation of the ground surrounding the airport, and on airport property. The AEDT uses terrain data to adjust the ground level under the flight paths. The terrain data does not affect the aircraft's performance or noise levels but does affect the vertical distance between the aircraft and a "receiver" on the ground. This in turn affects assumptions about how noise propagates over ground. The National Elevation Dataset (NED) 1/3 arc second terrain data were obtained from the United States Geological Survey (USGS). ${ }^{7}$ The NED data set has a resolution of 10 meters or approximately 33 feet.

4. Noise Analysis Results

DNL contours are the primary mechanism for evaluating airport noise in this EA. A supplemental grid point analysis investigates precisely where and to what extent noise exposure changes would be expected to occur. An inventory of the acreage, population, and housing units within the various bands of noise exposure provides additional information.

4.1 DNL Contours

Noise modeling for this EA was conducted using the FAA's AEDT Version 3d. Figures 10 through 14 present the required DNL contours of $65 \mathrm{~dB}, 70 \mathrm{~dB}$, and 75 dB , and for informational purposes only, the 60 dB DNL contour is depicted as a dashed line on each figure. FAA considers a DNL of 65 dB as the threshold below which all land uses are compatible.

Figure 10 depicts the Existing Conditions noise environment, based on actual 2019 aircraft operations, and also shows the underlying land use types. As shown, The 65 DNL noise contour extends primarily north and south of the runways, along the aircraft approach and departure paths to and from Runways $18 \mathrm{~L}-36 \mathrm{R}$ and 18R-36L. The figure also shows individual noise sensitive locations such as schools and places of worship. The FAA's guidelines for land use compatibility presented in Appendix A of 14 CFR Part 150

[^4]

WWW.hmmh.com
state that all land uses are generally compatible with aircraft noise below 65 dB DNL. The 65 dB DNL noise contour for Runway 18R-36L extends into mostly vacant land to the north and south. A small portion to the north of Runway 18R-36L falls within single family residential mobile home land use. A small portion to the west of Runway 18R-36L encompasses a small area of possible single family and multi-family residential land use area. The 65 DNL noise contour for Runway 18L-36R extends to the north and south into commercial, industrial, recreation, and public land uses. The Proposed Action would not result in a DNL 1.5 dB increase over any noise sensitive sites, therefore, there would be no significant noise impact on the surrounding community. Therefore, no mitigation is required. However, the Airport will assess the introduction of the twenty-three additional residential housing units in the 2032 proposed action as compared to the 2019 baseline, in relation to their Noise Compatibility Program to determine whether the units qualify for noise mitigation under 14 CFR Part 150.

Figure 11 shows the 65+ DNL contours for the 2027 Action and No Action, including individual noise sensitive locations such as schools and places of worship. The 65 dB DNL noise contour for Runway 18R36 L extends into mostly vacant land to the north and south. A small portion to the north of Runway 18R36L falls within single family residential and mobile home land use. A small portion to the west of Runway 18R-36L encompasses a small area of possible single family and multi-family residential land use area. The 65 DNL noise contour for Runway 18L-36R extends to the north and south into commercial, industrial, recreation, and public land uses.

Figure 12 shows the DNL contours for the 2027 Proposed Action. The 65 dB DNL noise contour for Runway 18R-36L extends into mostly vacant land to the north and south. A small portion to the north of Runway 18R-36L falls within single family residential mobile home land use. A small portion to the west of Runway 18R-36L encompasses a small area of possible single family and multi-family residential land use area. The 65 DNL noise contour for Runway 18L-36R extends to the north and south into commercial, industrial, recreation, and public land uses.

Figure 13 and Figure 14 portray the DNL contours for the No-Action Alternative and Proposed Action Alternative, respectively, for 2032, representing the forecast five years beyond the target design year. The 2032 Proposed Action 65 DNL noise contour encompasses a slightly larger area compared to the No Action case. The difference in size of the noise exposure contours are a result of the expected increase in passenger aircraft operations related to the expansion. The shape of the contours are essentially the same, as runway usage, flight track geometry, and flight track usage assumptions were held constant.

Figure 13 shows the 65+dB DNL noise contours for the 2032 No Action Alternative, including individual noise sensitive locations such as schools and places of worship. The 65 dB DNL noise contour for Runway $18 \mathrm{R}-36 \mathrm{~L}$ extends into mostly vacant land to the north and south. A small portion to the north of Runway $18 \mathrm{R}-36 \mathrm{~L}$ falls within mobile home land use. A small portion to the west of Runway 18R-36L encompasses a small area of single family and multi-family residential land use area. The 65 DNL noise contour for Runway 18L-36R extends to the north and south into commercial, industrial, recreation, and public land uses. No individual noise sensitive locations such as schools or houses of worship lie within the 65+ dB DNL noise contours for the 2032 No Action Alternative.

Figure 14 shows the 2032 Proposed Action DNL noise contours. The 65 dB DNL noise contour for Runway 18R-36L extends into mostly vacant land to the north and south. A small portion to the north of Runway $18 \mathrm{R}-36 \mathrm{~L}$ falls within mobile home land use. A small portion to the west of Runway 18R-36L encompasses a small area of single family and multi-family residential land use area. The 65 DNL noise contour for Runway 18L-36R extends to the north and south into commercial, industrial, recreation, and public land uses. No individual noise sensitive locations such as schools or houses of worship lie within the 65+ dB DNL noise contours for the 2032 Proposed Action.

Figure 15 shows the 2037 Proposed Action DNL noise contours for informational purposes only.

WWW.hmmh.com

Figure 10. Existing Conditions (2019) DNL Contours

Figure 11. 2027 No-Action Alternative DNL Contours

Figure 12. 2027 Proposed Action DNL Contours

Figure 13. 2032 No-Action Alternative DNL Contours

Figure 14. 2032 Proposed Action DNL Contours
havind

Figure 15. 2037 Proposed Action DNL Contours

Figure 16. 2019 Existing Conditions DNL Contours w/ Inset

Figure 17. 2027 No Action DNL Contours w/ Inset

Figure 18. 2027 Proposed Action DNL Contours w/ Inset

Figure 19. 2032 No Action DNL Contours w/ Inset

Figure 20. 2032 Proposed Action DNL Contours w/ Inset

4.2 Grid Point Analysis

The focus of the grid point analysis is to compare the No-Action and Proposed Action Alternatives, using FAA's thresholds of significance. Table 18 defines the significance threshold for changes in noise in accordance with FAA Order 1050.1F. When an action (compared to the No-Action alternative for the same timeframe) would cause noise-sensitive areas to have a DNL greater than or equal to 65 dB and experience a noise increase of at least 1.5 dB , the impact is considered significant. Table 18 also lists FAAdefined reportable changes of noise levels.

Table 18. FAA Thresholds for Significant or Reportable Changes in Noise

Source: FAA Order 1050.1F Desk Reference, Chapter 11			
	65 DNL or Greater	Greater than or equal to 60 NL but less than 65 DNL	Greater than or equal to 45 DNL but less than 60 DNL
Minimum Change in DNL with Alternative	1.5 dB	3.0 dB	5.0 dB
Level of Impact	Significant	Reportable	Reportable

To identify any regions meeting the FAA criteria for significant or reportable changes in noise because of the Proposed Action, HMMH compared the underlying noise exposure grids that inform the contours. Figure 21 and Figure 22and present the No-Action to Proposed Action contour comparisons again, with grid differences color-coded according to the criteria listed in Table 18. There are no grid points with significant impacts between the no-action to proposed action contours in 2027 or 2032.

Figure 21. Grid Point Differences Between Proposed Action and No Action for Forecast Year 2027

Figure 22. Grid Point Differences Between Proposed Action and No Action for Forecast Year 2032

4.3 Population Inventory

For each of the five sets of DNL contours prepared for this EA, HMMH prepared an inventory of housing units and population ${ }^{8}$ in the residential land use areas exposed to 65 dB DNL or higher. In order to estimate the number of people residing within the noise contours, existing parcel boundary land use maps were overlaid on 2020 US Census TIGER file maps that depict the smallest census enumeration unit. "Populated Area" data polygons were then created by combining census blocks with the residential land use, concentrating population and housing unit values into the residential portion of the census block where people actually live. For example, in some areas the population is concentrated along the road rather than over several square miles of open or undeveloped land. Using Geographic Information Systems (GIS) tools, the noise contours were intersected with the residential census data. The resultant wholly or partially encompassed residential census areas were then identified for each DNL contour interval; the proportion of total residential area was calculated to estimate the residential population and housing unit counts ascribed to that DNL interval. Figure $\mathbf{1 6}$ through Figure $\mathbf{2 0}$ show all DNL contour scenarios with insets that show areas of residential land uses that fall within the contours.

houmh

Table 19 presents the estimated population, housing, and land area within the given DNL contour intervals. None of the five scenarios would include residential land use at 70 dB DNL or greater. Table 19 shows a comparison of noise exposure for the modeled scenarios.

A total of 90 residents and 19 housing units would be within the $65+d B$ DNL noise contours in 2027, which is an increase of 60 residents and 12 housing units compared to 2019 conditions. The total area of the 65+ DNL noise contours under the 2027 No Action Alternative is $3,083.85$ acres, which is an increase of 428.12 acres. No individual noise sensitive locations such as schools or house of worship would be within the 65+ dB DNL noise contours for the 2027 No Action Alternative.

A total of 100 residents and 21 housing units would be within the 65+ dB DNL 2032 No Action noise contours as a result of no action, which is an increase of 10 residents and 2 housing unit compared to the 2027 No Action Alternative. The total area of the 65+ DNL noise contours under the 2032 No Action Alternative is 3,162.81 acres, which is an increase of 78.96 acres compared to the 2027 No Action Alternative. No individual noise sensitive locations such as schools or house of worship would be within the $65+\mathrm{dB}$ DNL noise contours for the 2027 No Action Alternative.

A total of 126 residents and 30 housing units would be within the $65+d B$ DNL noise contours in 2032 as a result of the Proposed Action, which is an increase of 26 residents and 9 housing units compared to the 2032 No Action Alternative. The total area for the 2032 Proposed Action DNL noise contours is $3,434.57$ acres, which is 271.76 acres greater than the area for the 2027 No Action Alternative DNL noise contours. As with the 2032 No Action Alternative, no individual noise sensitive locations such as schools or houses of worship lie within the $65+$ dB DNL noise contours for the 2032 Proposed Action.

There were no identified non-residential noise sensitive sites or places of worship, in the $65+\mathrm{dB}$ DNL interval for all five scenarios.

As noted in the introduction to this document, this noise analysis focused exclusively on airport-related noise sources. The Proposed Action is not expected to change non-airport noise sources such as commercial activity, highway traffic, or noise from local roadways. However, ambient noise levels from those sources do contribute to the overall acoustic environment. Residential locations within the aircraft noise 60 DNL or 65 DNL contours that are also in close proximity to busy streets or highways could experience actual DNL values higher than depicted on the contour map.

[^5]

Table 19. Comparison of Noise Exposure

Noise Exposure Interval	Existing Conditions (2019)	Design Year (2027)			5-Year Forecast (2032)		
		No-Action Alternative	Proposed Action Alternative	increase (or decrease)	No-Action Alternative	Proposed Action Alternative	increase (or decrease)
Population Inventory							
70 DNL or greater	0	0	0	-	0	0	-
65-70 DNL	30	90	90	0	100	126	26
Housing Units Inventory							
70 DNL or greater	0	0	0	-	0	0	-
65-70 DNL	7	19	19	0	21	30	9
Acreage Inventory							
75 DNL or greater	520.21	543.29	543.29	0	555.98	587.21	31.23
70-75 DNL	561.56	654.33	654.33	0	671.62	731.79	60.17
65-70 DNL	1,573.96	1,886.23	1,886.23	0	1,935.21	2,115.57	180.36
total 65 DNL or greater	2,655.73	3,083.85	3,083.85	0	3,162.81	3,434.57	271.76
Note: acreage estimation includes airport land							

5. Air Quality Analysis

This section presents and discusses the potential air quality impacts from the Proposed Action associated with (1) the construction and demolition activities of the projects, and (2) additional aircraft and associated auxiliary operations along with other direct and indirect emissions associated with operation of the Proposed Action. For this analysis, the inventory of air pollutant emissions associated with each of those items to the General Conformity de minimis thresholds for significance is the basis for evaluating the potential for significant impacts for NEPA compliance with the CAA.

5.1 Affected Environment

5.1.1 National Ambient Air Quality Standards

Under the National Environmental Policy Act (NEPA), federal agencies must consider the impact their actions will have on the environment compared to a no-action alternative. According to FAA NEPA implementing guidance (FAA Order 1050.1F and Desk Reference, and FAA Order 5050.4B), impacts to air quality must be considered as part of the environmental analysis under NEPA. Potential effects of the proposed action are evaluated against the National Ambient Air Quality Standards (NAAQS), as promulgated by the EPA under the Federal Clean Air Act (CAA).

The EPA currently regulates six criteria pollutants: ozone $\left(\mathrm{O}_{3}\right)$, carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, sulfur dioxide (SO_{2}), particulate matter (PM), and lead (Pb). Particulate matter is divided into two particle size categories: coarse particles with a diameter less than 10 micrometers (PM_{10}) and fine particles with a diameter of less than 2.5 micrometers ($\mathrm{PM}_{2.5}$). The NAAQS are expressed in terms of pollutant concentration measured (or averaged) over a defined period of time and are two-tiered. The first tier (the "primary standard") is intended to protect public health; the second tier (the "secondary standard") is intended to protect public welfare and prevent further degradation of the environment.

Table 20 shows the primary and secondary NAAQS for the criteria pollutants. Section 176(c) of the CAA states that federal agencies cannot engage, support, or provide financial assistance for licensing, permitting, or approving any project that could cause or contribute to the severity and/or number of violations of the NAAQS, or could inhibit the expeditious attainment of these standards.

The standards in Table 20 apply to the concentration of a pollutant in outdoor ambient air. If the air quality in a geographic area is equal to or better than the national standard, the EPA will typically designate the region as an "attainment area." An area where air quality does not meet the national standard is typically designated by the EPA as a "non-attainment area." Once the air quality in a non-attainment area improves to the point where it meets the standards and the additional requirements outlined in the CAA, the EPA can re-designate the area to attainment upon approval of a Maintenance Plan, and these areas are then referred to as "maintenance areas." Each state is required to prepare a State Implementation Plan (SIP) that outlines measures that regions within the state will implement to attain the applicable air quality standard in non-attainment areas for applicable criteria air pollutant, and to maintain compliance with the applicable air quality standard in maintenance areas. The status and severity of pollutant concentrations in a particular area will impact the types of measures a state must take to reach attainment with the NAAQS. The EPA must review and approve each state's SIP to ensure the proposed measures are sufficient to either attain or maintain compliance with the NAAQS within a set period of time.

The Clean Air Act Amendments (CAAA) of 1990 require states to make recommendations to the EPA regarding the attainment status of all areas within their borders when the EPA finalizes an update to any NAAQS. Under its CAAA authority, the EPA further classifies non-attainment areas for some pollutants - such as ozone - based on the severity of the NAAQS violation as marginal, moderate, serious, severe, and extreme. To further improve the nation's air quality, the EPA lowered the ozone standard in 2015 to 0.070 parts per million (ppm).

Table 20. National Ambient Air Quality Standards
Source: U.S. EPA NAAQS https://www.epa.gov/criteria-air-pollutants/naaqs-table as accessed on January, 2022

Pollutant	Averaging Time	Primary Standards	Secondary Standards
CO	Eight-hour	9 parts per million (ppm)	None
	One-hour	35 ppm	
Pb	Rolling Three-Month Average	0.15 micrograms ($\mu \mathrm{g}$) /cubic meter of air (m^{3})	Same as Primary
NO_{2}	Annual Arithmetic Mean	$0.053 \mathrm{ppm}\left(100 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$	Same as Primary
	One-hour	0.100 ppm Note 2	None
O_{3}	Eight-hour (2015 standard) ${ }^{\text {Note } 4}$	0.070 ppm	Same as Primary
PM ${ }_{2.5}$	Annual Arithmetic Mean	$12 \mu \mathrm{~g} / \mathrm{m}^{3 \text { Note } 1}$	$15 \mu \mathrm{~g} / \mathrm{m}^{3}$
	24-hour	$35 \mu \mathrm{~g} / \mathrm{m}^{3}$	Same as Primary
PM ${ }_{10}$	24-Hour	$150 \mu \mathrm{~g} / \mathrm{m}^{3 \text { Note } 1}$	Same as Primary
SO_{2}	One-hour	75 parts per billion (ppb) Note 3	None
	Three-hour	None	0.5 ppm
Table Notes: 1. For PM_{10}, the 24 -hour standard not to be exceeded more than once per year on average over three years. For $\mathrm{PM}_{2.5}$, the 24 -hour standard is attained when 98% of the daily concentrations, averaged over three years, are equal to or are less than the standard. 2. To attain this standard, the three-year average of the $98^{\text {th }}$ percentile of the daily maximum one-hour average at each monitor within an area must not exceed 0.100 ppm (effective January 22, 2010). 3. Final rule signed June 2,2010 . To attain this standard, the three-year average of the $99^{\text {th }}$ percentile of the daily maximum one-hour average at each monitor within an area must not exceed 75 ppb . 4. EPA updated the NAAQS for O_{3} to strengthen the primary eight-hour standard to 0.07 ppm on October 1, 2015. An area will meet the standard if the fourth-highest maximum daily eight-hour ozone concentration per year, averaged over three years is equal to or less than 70 ppb .			

5.1.2 Attainment Status

Air quality in the Austin area (i.e., Travis County) is designated by EPA Greenbook as being in attainment for all criteria pollutants ${ }^{9}$. Since the area is designated as attainment with the current EPA air quality standards, the General Conformity Rule does not apply. Under NEPA, a project's impact on air quality is assessed by evaluating whether it would cause a new violation of a NAAQS or contribute to a new violation in a manner that would increase the frequency or severity of a new violation ${ }^{10}$ For this analysis, the net change in air emissions was still compared to the applicable U.S. EPA de minimis levels for determining significant impacts ${ }^{11}$ under NEPA.

5.1.3 General Conformity Rule

The General Conformity Rule defines a federal action as any activity engaged in by a department, agency, or instrumentality of the federal government, or any activity that a department, agency, or instrumentality of the federal government supports in any way, provides financial assistance for, licenses, permits, or approves. General Conformity is defined as demonstrating that a project or action conforms to the SIP's purpose of eliminating or reducing the severity and number of violations of the NAAQS and achieving expeditious attainment of such standards. Federally funded and approved actions at airports are subject to the U.S. EPA's

[^6]
general conformity regulations. The General Conformity Rule ${ }^{12}$ applies to all federal actions except for certain highway and transit programs which must comply with the Transportation Conformity Plans. ${ }^{13}$

The General Conformity Rule includes annual emissions thresholds for nonattainment and maintenance areas that trigger the need for a General Conformity determination and defines projects that are typically excluded from General Conformity requirements. Since the General Conformity Rule applies to federally funded projects in EPA-designated non-attainment and maintenance areas, the General Conformity requirements do not apply to projects at Austin ${ }^{14}$.

5.2 Environmental Consequences of Proposed Action

Potential air quality impacts associated with construction and demolition of the Proposed Action are discussed in this section. After construction, the Proposed Action would induce additional aircraft operations compared to the No Build which as well as additional passenger trips, parking facilities and new Central Utility Plant. Therefore, both direct (i.e. additional aircraft operation emissions and combustion boiler emissions) and indirect (i.e. additional vehicle trips and parking structure) were also inventoried and evaluated.

5.2.1 Methodology

The methods used to calculate emissions of carbon monoxide (CO), volatile organic compounds (VOCs), oxides of nitrogen (NOX), sulfur oxides (SOX), particulate matter less than 10 microns (PM10), greenhouse gases (GHG) and fine particulate matter (PM2.5) from construction and demolition-related sources along with operational impacts of air pollutant emissions at AUS are documented in this section. The emissions analysis was conducted to develop emissions inventories pursuant to the National Environmental Policy Act of 1969 (NEPA), as well as to determine whether emissions associated with the Proposed Action would exceed applicable de minimis thresholds as documented in the U.S. Environmental Protection Agency's (EPA's) general conformity regulations to determine significance.

Estimates of construction and demolition-related emissions were developed for the Proposed Action using standard industry methodologies and techniques. Construction activities associated with the Proposed Action are anticipated to begin in 2022 and be completed in 2030.

Airport operational emissions inventories were developed for the existing (2019), future years (2027 and 2032) for those activities associated with the Proposed Action where additional emission are expected over the No Build. Both direct and indirect operational emissions were inventoried and compared to appropriate de minimis thresholds for determining significant impacts.

5.2.2 Construction Demolition and Construction Activities

Pollutant emissions resulting from construction and demolition activities associated with Proposed Action were estimated using standard industry methodologies and techniques. Construction and demolition emissions were not estimated for the No Action Alternative, because no demolition or construction activity would be associated with the No Action Alternative.

The demolition and construction associated with the Proposed Action would result in short-term changes in air emissions from sources such as exhaust from nonroad construction equipment such as:

```
haul trucks,
site clearing, and
grading.
```

On-road vehicles include those associated with:

[^7]
transport and delivery of supplies,
materials and equipment to and from the site, and
construction worker trips.
Additionally, fugitive dust emissions sources include:
site preparation,
land clearing,
material handling,
equipment movement on unpaved roads and
evaporative emissions from the application of asphalt paving.
Demolition and construction activities associated with the Proposed Action are expected to begin in the fourth quarter of 2022 and be completed in the second quarter of 2030. Table 21 presents the primary components of the Proposed Action, including estimated activity costs, area estimates (square feet) and anticipated start and end dates of construction. These costs and area estimates were used for deriving construction activity emission estimates with the Airport Cooperative Research Board's (ACRP) Airport Construction Emissions Inventory Tool (ACEIT) ${ }^{15}$. Construction emission analyses generally require a detail construction schedule such as the type of equipment, the amount of time of operation of such equipment, estimates of construction material and trips, employee activity, etc. This detailed construction data was not available for this analysis for each activity. To address this, the ACRP ACEIT model was used to estimate construction emissions.

Table 21. Proposed Action Construction and Demolition Activities
Source: AUS, December 2021

Project Action Component	Estimated Project Costs (\$)	Area (Square Feet)	Construction Start	Construction End
New Taxiway H and J	113.6M	890,300	2024: QTR 1	2026: QTR 2
New RON Apron	15.0M	1,789,000	2024: QTR 1	2026: QTR 2
Concourse B Apron	85.0M	1,943,000	2024: QTR 1	2026: QTR 2
Concourse B Taxiway Connections	28.5M	652,000	2024: QTR 1	2026: QTR 2
Runway 18R-36L Rapid Exit Taxiways	20.7M	400,500	2026: QTR 3	2028: QTR 3
New Taxiway D	73.0M	1,410,200	2026: QTR 3	2028: QTR 3
Demolition of Airfield Pavement	28.4M	464,000	2026: QTR 3	2028: QTR 3
New Airfield Pavement	19.9M	385,000	2026: QTR 3	2028: QTR 3
New Concourse B and Loading Bridges	423.7 M	342,000	2023: QTR 3	2026: QTR 2
Connector to Concourse B	444.0M	52,000	2024: QTR 2	2025: QTR 4
New Expanded Arrival Departure Hall	423.7 M	342,000	2027: QTR 3	2030: QTR 2
Pedestrian Bridge to CONRAC Parking	3.2 M	36,000	2029: QTR 3	2030: QTR 2
Demolition of South Buildings	0.7M	406,000	2022: QTR 4	2023: QTR 2
Demolition of Existing Parking Garage	105.9M	414,000	2024: QTR 1	2024: QTR 3
Demolition of Existing Terminal	5.0M	46,000	2022: QTR 4	2023: QTR 2
Demolition of Existing Roadway	8.0M	190,000	2025: QTR 2	2026: QTR 2
Upgrade Existing Access Roadway Network	9.0M	173,000	2025: QTR 2	2027: QTR 3

[^8]www.hmmh.com

New Terminal Curbside Roadway	209.9 M	177,000	2028: QTR 2	2030: QTR 2
New Emma Browning Road	15.0 M	106,000	2023: QTR 1	2025: QTR 1
New Employee Parking Lot	24.6 M	$1,225,000$	2025: QTR 1	2026: QTR 2
New Hydrant Fueling System	3.0 M	10 new tanks	2025: QTR 2	2026: QTR 1
New Catering Facility	20.0 M	25,500	2025: QTR 2	2026: QTR 1
New Central Utility Plant	65.0 M	72,000	2024: QTR 2	2026: QTR 1
Site Infrastructure	200 M	-	2024: QTR 3	2025: QTR 4
West Concourse Gate Expansion	85.2 M	33,000	2022: QTR 2	2024: QTR 2

The ACRP ACEIT model was used to estimate the construction schedule of equipment for each project component based on the project dimensions and project costs for each activity. The model has the ability to generate construction schedules for a variety of standard airport construction projects including the associated activity types and the equipment used for this project.

ACEIT can also produce emission factors for nonroad and on-road construction equipment, as well as for fugitive emission sources using EPA and industry standard models and methodologies. However, the current

numun

 version of ACEIT includes an older version of the U.S EPA's Motor Vehicle Emission Simulator (MOVES) emission model, MOVES2010a and NONROADs, which have both been updated over the years. For this analysis, the current version of MOVES (Version MOVES3.0.2) which includes the latest version of the NONROAD model was used to develop on-road and nonroad emission factors. These emission factors were applied to estimates of vehicle miles traveled (VMT) and construction equipment (hours, horsepower, load factor), respectively, as generated in ACEIT for each construction activity and year. Emission factors generated in NONROAD assume the phasing of Tier 1, Tier 2, Tier 3, and Tier 4 engines over time based on EPA regulations ${ }^{16}$. ACEIT and MOVE3 calculations for construction and demolition are presented in Appendix A.
Off-Road Construction Equipment

Off-road equipment emission factors for each construction year were estimated using the EPA NONROADs within MOVES3 representative of equipment used in Travis County ${ }^{17}$ for both criteria pollutants/precursors and greenhouse gases. Emission factors in grams per horsepower (hp-hr) for each off-road equipment type were applied to the equipment size (in hp), load factor, and anticipated activity levels (in hours per year) of expected equipment use as generated in in the construction equipment inventory by ACEIT. The annual emissions for offroad construction equipment were computed using the following equation:

Off-road Vehicle Construction emissions (tons per year) = emission factor (grams per hp-hr) x size (hp) x load factor x hours per year x (1 pound/453.6 grams) x (1 ton /2000 pounds)

On-Road Construction Passenger/Truck Delivery Vehicles

Vehicle miles traveled (VMT) data for each on-road employee trip and truck delivery vehicles were derived from round trip distances and the number of employee hours from the activity specific construction schedule. It is assumed that all on-road equipment will use gasoline for passenger vehicles and diesel fuel for truck deliveries. Emission factors in grams per mile (g/mile) for each on-road vehicle type were applied to the anticipated VMT. Similar to the offroad equipment, the MOVES3 model vehicle data representative of vehicles used in Travis County for both criteria pollutants/precursors and greenhouse gases was used to estimate emissions factors in grams per mile.

[^9]

The annual emissions for on-road construction equipment and passenger/delivery vehicles were computed for each year using the following equation:

On-road construction vehicles emissions (tons per year) = emission factor ($\mathrm{g} / \mathrm{mile}$) x annual vehicle miles traveled (VMT) x (1 pound/453.6 grams) x (1 ton/2000 pounds)

Fugitive Dust Emissions

Fugitive dust emissions from site preparation, land clearing, equipment movement on unpaved areas, material handling, along with evaporative emissions from asphalt paving activities, were calculated using EPA emission factors and included in the total construction emissions. ACEIT default assumptions were used for each activity to estimate fugitive PM and VOC emissions.

5.2.3 Summary of Construction-Related Emissions

Construction-related emissions of criteria pollutants during the construction period 2022 to 2030 under the Proposed Action are summarized in Table 22. For this analysis, GHG emissions associated with the Proposed Action were prepared for disclosure purposes as carbon dioxide equivalent ($\mathrm{CO}_{2 \mathrm{E}}$) in metric tons per year relevant to their global warming potential. ${ }^{18}$

Table 22. Construction Emission Inventory - Proposed Action
Source: HMMH, 2022, Based on ACEIT, MOVES3.0.2 results using construction information provided by AUS, December 2021

Year	Relevant Criteria Pollutant Emissions (tons per year)						
	CO	VOCNote 1	$\mathrm{NO}_{2}{ }^{\text {Note } 1}$	SO_{2}	PM ${ }_{10}$	PM ${ }_{2,5}$	$\mathrm{CO}_{2} \mathrm{e}^{\text {Note } 2}$
2022	8.1	0.4	3.5	0.015	0.28	0.23	4,613
2023	31.7	2.1	11.4	0.060	1.17	0.83	17,907
2024	57.9	2.8	17.7	0.132	3.17	1.20	32,940
2025	55.4	2.5	9.8	0.114	3.75	0.51	20,702
2026	35.5	0.9	4.2	0.058	1.57	0.22	8,654
2027	20.8	0.8	2.4	0.039	1.12	0.12	7,061
2028	28.7	0.9	1.9	0.038	0.79	0.09	6,955
2029	22.7	0.6	1.2	0.022	0.28	0.05	4,051
2030	7.2	0.2	0.7	0.009	0.15	0.03	1,870
Notes: 1. Following standard industry practice, ozone was evaluated by evaluating emissions of VOC and NO_{x}, which are precursors in the formation of ozone. 2. $\mathrm{CO}_{2} \mathrm{e}$ emissions are in metric tons per year equivalent relevant to their GWP.							

5.2.4 Direct and Indirect Operational Emissions

Both direct and indirect operational emissions were evaluated for the Proposed Action. Direct emissions included additional aircraft operational activities and new Central Utility Plant combustion emissions, while indirect emissions included emissions associated with ground access vehicles and parking trips associated with the Proposed Action. Operational emissions were estimated for the Proposed Action for 2027 and 2032 and the net change in emissions from the Proposed Action compared to the No Action were compared to the EPA de minimis thresholds for significance.

[^10]

5.2.5 Aircraft Operational Activities

As discussed above, implementation of the Proposed Action would increase the number of aircraft operations and related equipment compared to the No Action alternatives, therefore aircraft operational emissions were estimated for the 2027 and 2032 for each Alternative. It should be noted that for 2027, the Proposed Action are similar and due to the No Action ground loading operations and being able to meet the TAF. The AEDT emission estimates for both the No Action and the Proposed Action cases were estimated for 2027 and 2032 using the same set of model inputs and forecast operations that were used for the noise calculations, as documented in the noise section of this memorandum. More specific, the 2032 No Action includes constrained forecast operations and AEDT default taxi times, AEDT default GSE equipment and AEDT default APU times (26 minutes). The 2032 Proposed Action assumes unconstrained forecast operations, slight changes in taxi times between the No Build and Build Action and default GSE equipment and default APU times (26 minutes). The aircraft operational emissions include emissions from the ground support equipment and auxiliary power units associated with the Proposed Action and No Action. Aircraft operations estimated for this analysis includes emissions below the default 3,000 mixing height and include:

- Start up
- Taxi Out
- Climb below the mixing height
- Descend below the mixing height
- Taxi In
- Ground Service Equipment (GSE) landing and take off (LTO); and
- Auxiliary Power Units (APU)

Table 23 provides the existing 2019 and the forecast No Action and Proposed Action operational emissions for 2027 and 2032 as calculated by the AEDT. The net change in emissions is provided in bold.

Table 23. Operational Emissions Inventory of the Forecast No Action and Proposed Action Cases

Aircraft Operations Case	Relevant Criteria Pollutant Emissions (tons per year) ${ }^{\text {Note } 2}$					
	CO	VOCNote 1	$\mathrm{NO}_{2}{ }^{\text {Note } 1}$	SO_{2}	PM ${ }_{10}$	PM ${ }_{2.5}$
2019 Existing	965.1	145.373 .5	732.2	67.7	11.0	10.9
2027 No Action	1,056.9	159.6	915.1	84.2	13.1	13.0
2027 Proposed Action	1,056.9	159.6	915.1	84.2	13.1	13.0
2027 Net Change (Proposed Action - No Action)	0	0	0	0	0	0
2032 No Action Note 4	1,097.7	166.6	956.3	87.6	13.4	13.4
2032 Proposed Action	1,184.4	178.1	1,062.2	96.7	14.8	14.7
2032 Net Change (Proposed Action - No Action)	+86.6	+11.5	+105.9	+9.1	+1.4	+1.4
Notes: 1. Following standard industry practice, ozone was evaluated by evaluating emissions of VOC and NO_{x}, which are precursors in the formation of ozone. 2. Operational emissions denote emissions associated with aircraft operations only. 3. The Proposed Action for 2032 assumed unconstrained operations, adjusted taxi times from the AEDT default to reflect a more realistic scenario based on forecast operations along with default GSE and APU operation. 4.The Proposed No Action for 2032 assumes constrained operations, default taxi times, default GSE and default APU.						

5.2.6 New Central Utility Plant Operations

The existing Central Utility Plant (CUP) will be phased out of service as the proposed projects come online. The existing CUP has two 12.25 million British thermal units (BTU) boilers that service the existing Barbara Jordon Terminal which is approximately $1,000,000$ square feet. The Proposed Action will add an additional 1,500,000 square feet (sq ft) of conditioned space to be served by the future projects. The future CUP will operate five natural gas fired 12.25 million BTU to support $2,500,000$ square feet of conditioned space initially. The new boilers are expected to come on-line in 2027 or soon thereafter, therefore, net change in operational emissions for 2027 was carried forward and would be representative of the net changes for the opening 2032 year to determine the total net emission change from the Proposed Action once all the projects are completed. Boiler emissions were estimated based on annual and estimated fuel usage and permitted emission factors for each boiler and are presented in Appendix A. The net change in operational boiler emissions are presented in bold below in

Table 24.

Table 24. Operational Emissions Inventory of the Central Utility Plant
Source: AUS, January 2022

Boiler Utility Operations Case	Relevant Criteria Pollutant Emissions (tons per year) ${ }^{\text {Note 2 }}$					
	CO	VOC $^{\text {Note 1 }}$	NO $_{\mathbf{2}}{ }^{\text {Note 1 }}$	SO $_{\mathbf{2}}$	PM $_{\mathbf{1 0}}$	PM $_{\mathbf{2} .5}$
2027 No Action	0.8208	0.0537	0.4886	.0059	0.0743	0.0743

Boiler Utility Operations Case	Relevant Criteria Pollutant Emissions (tons per year) ${ }^{\text {Note } 2}$					
	CO	VOC ${ }^{\text {Note }} 1$	$\mathrm{NO}_{2}{ }^{\text {Note } 1}$	SO_{2}	PM ${ }_{10}$	PM 2.5
2027 Proposed Action	2.0521	0.1344	1.2215	0.0147	. 1857	. 1857
2027 Net Change in Boiler Operational Emissions (No Action-Proposed Action)	+1.23	+0.08	+0.73	+0.009	+0.11	+0.11
2032 No Action	0.8208	0.0537	0.4886	. 0059	0.0743	0.0743
2032 Proposed Action	2.0521	0.1344	1.2215	0.0147	. 1857	. 1857
2032 Net Change in Boiler Operational Emissions	+1.23	+0.08	+0.73	+0.009	+0.11	+0.11
Notes: 1. Following standard industry practice, ozone was evaluated by evaluating emissions of VOC and NO_{x}, which are precursors in the formation of ozone. 2. CUP Operational emissions denote emissions associated with the existing and new boilers.						

The new boilers will require an air quality permit with the Texas Commission on Environmental Quality (TCEQ) under the Permits by Rule (PBR) 106.4 in order to construct and operate the boilers.

5.2.7 Additional Ground Access Vehicles and Parking Areas

The Proposed Action will generate additional aircraft operations which will also result in an increase in passengers and vehicle trips to the airport above the No Action alternative. The additional vehicle trips accessing the airport are expected to occur after implementation of the Projects (i.e. after 2030), therefore additional vehicle trips above the No Action were estimated for the 2032 conditions and included both moving and idling emissions as they enter and leave the airport. In addition to vehicle trips from passengers, vehicle emissions associated with the new parking facilities were also estimated.

Vehicle miles traveled were estimated for the roadway network based on the roadway segment and expected passenger daily trips along each link for the 2032 conditions entering and leaving the airport from Route 71 along Presidential Boulevard. The MOVES3 emission model was used to estimate pollutant specific emission factors for each segment based on expected vehicle speeds of 30 miles per hour and average idling time of 5 minutes per hour for each vehicle. The net change (i.e. Proposed Action minus the No Action) in emissions were estimated for the ground access vehicles accessing the airport, therefore emissions associated with the additional traffic were estimated for 2032 while the 2032 No Action assumes no change to the existing traffic.

The Proposed Action Alternative also includes emissions associated with vehicles using the new parking area which is not expected to fully come on-line until sometime between 2027 and 2030. Emissions for the new parking area were estimated for 2032 using MOVES3 emissions factors while the 2032 No Action assumes no change to the existing parking facilities. Similar to the GAV, only the net change in vehicle emissions were estimated for the new parking area for 2032 while the 2032 No Action assumes no change to the existing parking. Appendix A includes the emission calculations for the GAV and new parking areas.

The new parking area will total approximately 3,150 additional spaces and will initially be utilized for construction activities and transition to employee surface parking by 2030. Table $\mathbf{2 5}$ and Table $\mathbf{2 6}$ summarizes the operational emissions along the roadways and from the parking garages, respectively, under the No Action and Proposed Action Alternative for 2032.

Table 25. Operational Emissions Inventory of the Additional Ground Access Vehicles
Source; HMMH and AUS, 2022

Ground Access Vehicles	Relevant Criteria Pollutant Emissions (tons per year) ${ }^{\text {Note } 2}$					
	CO	VOC ${ }^{\text {Note } 1}$	$\mathrm{NO}_{2}{ }^{\text {Note } 1}$	SO_{2}	PM ${ }_{10}$	PM ${ }_{2.5}$
2032 No Action	N/C	N/C	N/C	N/C	N/C	N/C
2032 Proposed Action ${ }^{\text {Note3 }}$	8.17	0.04	0.04	0.006	0.005	0.005
2032 Net Change (Proposed Action - No Action)	+8.17	+0.04	+0.04	+0.006	+0.005	+0.005
Notes: 1. Following standard industry practice, ozone was evaluated by evaluating emissions of VOC and NO_{x}, which are precursors in the formation of ozone. 2. Operational emissions denote emissions associated with additional ground vehicles passenger trips generated by the Proposed Action compared to the No Action. N/C denotes d No Action remains unchanged. 3. Proposed Action emissions represent additional ground access vehicle trips compared to the No Action.						

Table 26. Operational Emissions Inventory of the Additional Parking Areas
Source; HMMH and AUS, 2022

Parking Area Case	Relevant Criteria Pollutant Emissions (tons per year) ${ }^{\text {Note } 2}$					
	CO	VOCNote 1	$\mathrm{NO}_{2}{ }^{\text {Note }} 1$	SO_{2}	PM ${ }_{10}$	PM 2.5
2032 No Action	N/C	N/C	N/C	N/C	N/C	N/C
2032 Proposed Action Note3	2.66	0.011	0.012	0.002	0.002	0.001
2032 Net Change (Proposed Action - No Action)	+2.66	+0.011	+0.012	+0.002	+0.002	+0.001
Notes: 1. Following standard industry practice, ozone was evaluated by evaluating emissions of VOC and NO_{x}, which are precursors in the formation of ozone. 2. Operational emissions denote emissions associated with vehicles utilizing the new parking areas by the Proposed Action compared to the No Action. N/C denotes d No Action remains unchanged. 3. Proposed Action emissions represent additional vehicle associated with the new parking areas compared to the No Action.						

5.2.8 Significance Thresholds

Austin Bergstrom International Airport is located in Travis County, which is designated as attainment with the NAAQS by EPA for all criteria pollutants, therefore the General Conformity Rule does not apply. However, the emissions associated with the Proposed Action for both Construction and Operations are compared to the General Conformity de minimis levels for attainment/maintenance areas for determining significant impacts ${ }^{19}$.

Table 27 presents the total emissions associated with demolition and construction of the Proposed Action for each year of the construction period (2022 through 2030) compared with the appropriate de minimis thresholds. As the table shows, the total emissions for each construction year would be below established de minimis thresholds for all pollutants and would not result in a significant air quality impact. It should be noted that the CUP facility will come on-line in 2027 and therefore the CUP emissions were included in the 2027 construction and demolition emissions in Table $\mathbf{2 7}$ for comparison to de minimis threshold.

[^11]

Table 27. Total Construction and Demolition Emissions Compared to De Minimis Thresholds
Source: HMMH, 2021

Year	Relevant Criteria Pollutant Emissions (tons per year)					
	CO	VOC	NO_{2}	SO_{2}	PM ${ }_{10}$	PM ${ }_{2,5}$
2022						
Total Emissions of Construction and Demolition	8.1	0.4	3.5	0.015	0.28	0.23
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2023						
Total Emissions of Construction and Demolition	31.7	2.1	11.4	0.060	1.17	0.83
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2024						
Total Emissions of Construction and Demolition	57.9	2.8	17.7	0.132	3.17	1.20
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2025						
Total Emissions of Construction and Demolition	55.4	2.5	9.8	0.114	3.75	0.51
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2026						
Total Emissions of Construction and Demolition	35.5	0.9	4.2	0.058	1.57	0.22
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
$2027{ }^{1}$						
Total Emissions of Construction and Demolition and Boiler Operations	22.0	0.9	3.1	0.048	1.23	0.23
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2028						
Total Emissions of Construction and Demolition	28.7	0.9	1.9	0.038	0.79	0.09
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2029						
Total Emissions of Construction and Demolition	22.7	0.6	1.2	0.022	0.28	0.05
EPA De Minimis Threshold	100	100	100	100	100	100

Year	Relevant Criteria Pollutant Emissions (tons per year)					
	CO	VOC	$\mathbf{N O}_{2}$	SO_{2}	$\mathrm{PM} \mathbf{I O}_{10}$	$\mathrm{PM}_{2.5}$
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
2030						
Total Emissions of Construction and Demolition	7.2	0.2	0.67	0.009	0.15	0.03
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes

Notes: 1. 2027 emissions includes both construction/demolition and the CUP emissions which will be on-line that year for comparison to de minimis thresholds

Table $\mathbf{2 8}$ presents the net change in operational emissions (aircraft, new boilers, ground access vehicles, and new parking facilities) from the implementation of the Proposed Action compared to the No Action and compares those emissions changes to the appropriate de minimis thresholds for significance determination for 2027 and 2032. It should be noted that the net operational emissions for 2027 also includes the construction/demolition emissions for 2027 which will be occurring when the new CUP boilers come on-line. As the table shows, the net change would be below established de minimis thresholds for all pollutants for 2027 and 2032 except NOx for 2032 which is slightly above the de minimis threshold of 100 tpy (at 106.7 tpy) of which the aviation net operational emissions constitute 105.9 tpy of the total. It should be noted that the aircraft operations assumptions used in AEDT for the Proposed Action are conservative and do not include PCA or ground power, revised taxi times, and other low emission projects that will be undertaken at the airport to reduce fossil fuel usage and reduce air emissions. As discussed above, since the airport is located in an EPA designated attainment area for all pollutants, General Conformity does not apply. It should also be noted that the airport measures were included in the Austin Eight-Hour O3 Flex plan that was developed approximately 10 years ago and is listed on the TCEQ website. This is voluntary initiative for the Austin MSA and includes the airport. 2021 Furthermore, 106 ton per year net emission increase is a fraction of the 2016 Travis County NOx emissions were estimate of 13,048 tons per year assuming conservative assumptions as stated above.

Table 28. Net Operational Emission Changes Compared to De Minimis Thresholds

Year	Source: HMMH, 2022					
	Relevant Criteria Pollutant Emissions (tons per year)					
	CO	VOC	NO_{2}	SO_{2}	PM ${ }_{10}$	PM ${ }_{2,5}$
2027 Net Change in Aircraft Operational Emissions of the Proposed Action	No Change					
Net Change in New Utility Boiler Emissions	+1.23	+0.08	+0.73	+0.009	+0.11	+0.11
Construction and Demolition	20.8	0.8	2.4	0.039	1.12	0.12
Total Aircraft, CUP, and Construction/demolition Net Emissions (TPY) ${ }^{1}$	+22.0	+0.88	+3.13	+0.048	+1.23	+0.23
EPA De Minimis Threshold	100	100	100	100	100	100
Emissions below de minimis thresholds?	Yes	Yes	Yes	Yes	Yes	Yes

[^12]| Year | Relevant Criteria Pollutant Emissions (tons per year) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | CO | VOC | $\mathbf{N O}_{2}$ | $\mathbf{S O}_{2}$ | $\mathbf{P M}_{10}$ | $\mathbf{P M}_{2.5}$ |
| 2032 Net Change in Aircraft
 Operational Emissions of the
 Proposed Action | +86.7 | +11.5 | +105.9 | +9.1 | +1.4 | +1.4 |
| Net Change in New Utility
 Boiler Emissions | +1.23 | +0.08 | +0.73 | +0.009 | +0.11 | +0.11 |
| Net Change in Ground Access
 Vehicle Emissions | +8.20 | +0.04 | +0.04 | +0.006 | +0.005 | +0.005 |
| Net Change in Parking Area
 Emissions | +2.66 | +0.011 | +0.012 | +0.002 | +0.002 | +0.001 |
| Total Aircraft and Utility
 Boiler Net Emissions (TPY) | +98.9 | $\mathbf{+ 1 1 . 6 -}$ | +106.7 | +9.1 | +1.5 | $+\mathbf{1 . 5}$ |
| EPA De Minimis Threshold | 100 | 100 | 100 | 100 | 100 | $\mathbf{1 0 0}$ |
| Emissions below de minimis
 thresholds? | Yes | Yes | No | Yes | Yes | Yes |

Notes: 1.2027 emissions includes operational emissions and construction/demolition activity emissions for 2027 for

numun

comparison to the de minimis thresholds.

5.2.9 No Action Alternative

The No-Action Alternative assumes that the proposed action is not implemented, and air quality would remain unchanged for 2027 and 2032. Therefore, no additional air quality impacts would occur as a result of the NoAction case.

5.2.10 Mitigation

As indicated above, impacts to air quality with the implementation of the Proposed Action would not be significant for most pollutants except NOx (which is slightly above 100 tpy), when compared to the No Action. AUS is committed to mitigation measures that were not included in the analysis which will further reduce emissions for 2032. These measures will be further developed by AUS.

5.3 Climate

Climate change is a global phenomenon that can have local impacts. ${ }^{22}$ Scientific measurements show that Earth's climate is warming, with concurrent impacts including warmer air temperatures, increased sea level rise, increased storm activity, and an increased intensity in precipitation events. Increasing concentrations of greenhouse gas (GHG) emissions in the atmosphere affect global climate. ${ }^{23,24,}$ GHG emissions result from anthropogenic sources, including the combustion of fossil fuels. GHGs include carbon dioxide (CO_{2}), methane $\left(\mathrm{CH}_{4}\right)$, nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$), ozone $\left(\mathrm{O}_{3}\right)$, and fluorinated gases. ${ }^{25} \mathrm{CO}_{2}$ is the most important anthropogenic GHG because it is a long-lived gas that remains in the atmosphere for up to 100 years.

[^13]

5.3.1 Regulatory Framework

The impact of proposed projects on climate change is a growing concern. Greenhouse gases (GHGs) are those that trap heat in the earth's atmosphere; these include water (H2O) vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and O3. Research has shown that there is a direct link between fuel combustion and GHG emissions. Therefore, sources that require fuel or power at an airport are the primary sources that would generate GHGs. Aircraft are probably the most often cited air pollutant source, but they produce the same types of emissions as cars. Per Aviation and Emissions: A Primer, "Aircraft jet engines, like many other vehicle engines, produce CO2, H2O vapor, N2O, CO, oxides of sulfur, unburned or partially combusted hydrocarbons or VOCs, particulates, and other trace compounds." ${ }^{26}$

Per FAA Order 1050.1F, the discussion of potential climate impacts should be documented in a separate section of the NEPA document, distinct from air quality27. Where the proposed action or alternative(s) would result in an increase in greenhouse gases (GHG) emissions, the emissions should be assessed either qualitatively or quantitatively.

Researchers developed the Global Warming Potential (GWP) as a way to compare the global warming impacts of different gases, by converting each gas amount to a carbon dioxide equivalent (CO2E). GWPs provide a

итиunn

 common unit of measure, which allows for consistency when estimating emissions of these different gases. CO2 has a GWP of one because it is the gas used as the reference point. CH4 does not last as long in the atmosphere as CO2; however, it absorbs much more energy. Therefore, one ton of CH 4 has 28 times more heat capturing potential than one ton of CO2. The amount of CH 4 emissions would be multiplied by 28 to determine its CO2E value. NOX lasts in the atmosphere far longer than CO2. The amount of nitrous oxides emissions would be multiplied by 298 to determine its CO2E value.Based on the President's recent Executive Order ${ }^{28}$, the project impacts on greenhouse gas (GHG) emissions and climate change should be documented in the Environmental Assessment (EA). Although no federal standards have been set for GHG emissions, it is well established that GHG emissions can affect climate. Based on guidance from the FAA Order 1050.1F Desk Reference, state and local policies and programs that address climate change are discussed in this section. The guidance recommends consideration of: (1) the potential effects of a proposed action or its alternatives on climate change as indicated by its GHG emissions; (2) the implications of climate change for the environmental effects of a proposed action or alternatives.

5.3.2 Affected Environment

Greenhouse gases (GHG) are gases that trap heat in the earth's atmosphere. Both naturally occurring and manmade GHGs primarily include water vapor, carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Activities that require fuel or power are the primary stationary sources of GHGs at airports. Aircraft and ground access vehicles, which are not under the control of an airport, typically generate more GHG emissions than airport-controlled sources.

Research has shown there is a direct correlation between fuel combustion and GHG emissions. In terms of U.S. contribution, the Government Accountability Office (GAO) reports that "domestic aviation contributes about three percent of total carbon dioxide emissions, according to EPA data," compared with other industrial sources, including the remainder of the transportation sector (20\%) and power generation (41\%). The International Civil Aviation Organization (ICAO) estimates that GHG emissions from aircraft account for roughly three percent of all anthropogenic GHG emissions globally. ${ }^{19}$ Climate change due to GHG emissions is a global phenomenon; therefore, the affected environment is the global climate.

[^14]

5.3.3 Analysis Methodology

For this analysis, GHG emissions associated with the Proposed Action were prepared for carbon dioxide, methane, and nitrous oxide and presented as carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ in metric tons per year relevant to their global warming potential. The carbon dioxide equivalent is estimated by taking the mass equivalent of each pollutant (TPY) and multiplying by the global warming potential equivalent (GWP) of each pollutant and adding them together. For example, the GWP of CO_{2} is $1, \mathrm{CH}_{4}$ is 28 GWP , and $\mathrm{N}_{2} \mathrm{O}$ is 265 GWP, according to the IPCC Fifth Assessment Report ${ }^{29}$.

The methodology and assumptions for the GHG analysis are consistent with the air quality analysis discussed in Section 1.2.2 and 2.2.4. GHG emissions associated with the construction and demolition activities as well as the increase in GHG emissions due to operational changes of the Proposed Action were qualitatively evaluated.

5.3.4 Environmental Consequences of Proposed Action Alternative

Table 29 presents the annual greenhouse gas emissions for demolition and construction activities while Table 30 presents the GHG operational emissions associated with the 2019 existing and future Proposed Action and No Action for 2027 and 2032.

numun

There are no defined significance thresholds for aviation GHG emissions, nor has FAA identified any factors to consider in making a significance determination for GHG emissions.

In summary, while there are no significance thresholds established for climate impacts, GHGs associated with the Proposed Action have been calculated in accordance with the latest FAA guidelines (1050.1F) for climate impacts in a NEPA document ${ }^{30}$ and included in the emission spreadsheets in Appendix A.

Table 29. GHG Emissions Associated with Construction and Demolition for the Proposed Action
Source: HMMH 2022

Year	Greenhouse Gases (metric tons/year)			$\mathrm{CO}_{2} \mathrm{e}$ (metric tons/year) ${ }^{\text {Note } 2}$
	CO_{2}	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	
Construction ${ }^{\text {Note } 1}$				
2022	4,611	0.021	0.004	4,613
2023	17,900	0.083	0.017	17,907
2024	32,928	0.144	0.030	32,940
2025	20,689	0.143	0.032	20,702
2026	8,653	0.019	0.002	8,654
2027	7,055	0.051	0.013	7,061
2028	6,947	0.071	0.019	6,955
2029	4,046	0.057	0.014	4,051
2030	1,868	0.018	0.005	1,870
Notes: 1. Construction emissions derived from ACEIT and EPA MOVES3. 2. Emissions are reported as metric tons of carbon dioxide equivalents to present a normalized unit of greenhouse gas emissions based on the global warming potential of each gas. $\mathrm{CO}_{2} \mathrm{e}$ is a combination of CO 2 emissions with the CO2-equivalent emissions of other greenhouse gases.				

[^15]WWw.hmmh.com

Table 30. GHG Emissions Associated with Operations for the Proposed Action
Source: HMMH 2022

	Source: HMMH 2022						
		Activity	Aircraft Fuel Usage (tons)	Greenhouse Gases (metric tons/year)			$\mathrm{CO}_{2} \mathrm{e}$ (metric tons/year) ${ }^{\text {Note } 2}$
				CO_{2}	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	
WMW	2019	Existing Conditions ${ }^{\text {Note1 }}$	54,370	171,537	N/A	N/A	155,616
	2027	Aircraft No Action ${ }^{\text {Note1 }}$	67,596	213,262	N/A	N/A	193,468
	n	Aircraft Proposed Action ${ }^{\text {Note1 }}$	67,596	213,262	N/A	N/A	193,468
	2032	Aircraft No Action ${ }^{\text {Note }} 1$	70,338	221,197	N/A	N/A	200,666
		Aircraft Proposed Action ${ }^{\text {Note1 }}$	77,940	245,906	N/A	N/A	223,082
		Net Change in CUP GHGs	N/a	1596	0.06	0.04	1,608
		Net Change in GAV GHGs	N/a	915	0.52	1.41	917
		Net Change in Additional Parking GHGs	N/a	259	0.005	0.002	260
	Notes: 1. GHG emissions are derived by AEDT for each condition. 2. Emissions are reported as metric tons of carbon dioxide equivalents to present a normalized unit of greenhouse gas emissions based on the global warming potential of each gas. $\mathrm{CO}_{2} \mathrm{e}$ is a combination of CO 2 emissions with the CO 2 -equivalent emissions of other greenhouse gases. N/A Not applicable, AEDT does not estimate CH4 and N2O emissions. N/A under the aircraft fuel usage does not apply to operational source						

5.3.5 Environmental Consequences of No Action Alternative

The No-Action Alternative assumes that the proposed action is not implemented, and air quality would remain unchanged for 2027. Therefore, no additional air quality impacts would occur as a result of the No-Action case. For 2032, the No Action assumes hard stands are in place to address additional aircraft activity due to the constrained gates at the terminal to account for additional APU and GPU activity

6. Aircraft Noise Terminology

Noise is a complex physical quantity. The properties, measurement, and presentation of noise involve specialized terminology that can be difficult to understand. To provide a basic reference on these technical issues, this section introduces fundamentals of noise terminology, the effects of noise on human activity, and noise propagation.

6.1 Introduction to Noise Terminology

Analyses of potential impacts from changes in aircraft noise levels rely largely on a measure of cumulative noise exposure over an entire calendar year, expressed in terms of a metric called the Day-Night Average Sound Level (DNL). However, DNL does not provide an adequate description of noise for many purposes. A variety of measures, which are further described in subsequent sub-sections, are available to address essentially any issue of concern, including:

- Sound Pressure Level, SPL, and the Decibel, dB
- A-Weighted Decibel, dBA
- Maximum A-Weighted Sound Level, $\mathrm{L}_{\text {max }}$
- Time Above, TA
- Sound Exposure Level, SEL
- Equivalent A-Weighted Sound Level, Leq
- Day-Night Average Sound Level, DNL

6.1.1 Sound Pressure Level, SPL, and the Decibel, dB

All sounds come from a sound source - a musical instrument, a voice speaking, an airplane passing overhead. It takes energy to produce sound. The sound energy produced by any sound source travels through the air in sound waves - tiny, quick oscillations of pressure just above and just below atmospheric pressure. The ear senses these pressure variations and - with much processing in our brain - translates them into "sound."

Our ears are sensitive to a wide range of sound pressures. The loudest sounds that we can hear without pain contain about one million times more energy than the quietest sounds we can detect. To allow us to perceive sound over this very wide range, our ear/brain "auditory system" compresses our response in a complex manner, represented by a term called sound pressure level (SPL), which we express in units called decibels (dB).

Mathematically, SPL is a logarithmic quantity based on the ratio of two sound pressures, the numerator being the pressure of the sound source of interest ($\mathrm{P}_{\text {source }}$), and the denominator being a reference pressure $\left(P_{\text {reference }}\right)^{31}$

$$
\text { Sound Pressure Level }(S P L)=20 * \log \left(\frac{P_{\text {source }}}{P_{\text {reference }}}\right) d B
$$

The logarithmic conversion of sound pressure to SPL means that the quietest sound that we can hear (the reference pressure) has a sound pressure level of about 0 dB , while the loudest sounds

[^16]

WWW.hmmh.com
that we hear without pain have sound pressure levels of about 120 dB . Most sounds in our day-to-day environment have sound pressure levels from about 40 to $100 \mathrm{~dB}^{32}$.

Because decibels are logarithmic quantities, we cannot use common arithmetic to combine them. For example, if two sound sources each produce 100 dB operating individually, when they operate simultaneously, they produce 103 dB -- not the 200 dB we might expect. Increasing to four equal sources operating simultaneously will add another three decibels of noise, resulting in a total SPL of 106 dB . For every doubling of the number of equal sources, the SPL goes up another three decibels.

If one noise source is much louder than another is, the louder source "masks" the quieter one and the two sources together produce virtually the same SPL as the louder source alone. For example, a 100 dB and 80 dB sources produce approximately 100 dB of noise when operating together.

Two useful "rules of thumb" related to SPL are worth noting: (1) humans generally perceive a six to 10 dB increase in SPL to be about a doubling of loudness, ${ }^{33}$ and (2) changes in SPL of less than about three decibels for an particular sound are not readily detectable outside of a laboratory environment.

6.1.2 A-Weighted Decibel

An important characteristic of sound is its frequency, or "pitch." This is the per-second oscillation rate of the sound pressure variation at our ear, expressed in units known as Hertz (Hz).

When analyzing the total noise of any source, acousticians often break the noise into frequency components (or bands) to consider the "low," "medium," and "high" frequency components. This breakdown is important for two reasons:

- Our ear is better equipped to hear mid and high frequencies and is least sensitive to lower frequencies. Thus, we find mid- and high-frequency noise more annoying.
- Engineering solutions to noise problems differ with frequency content. Lowfrequency noise is generally harder to control.

The normal frequency range of hearing for most people extends from a low of about 20 Hz to a high of about 10,000 to $15,000 \mathrm{~Hz}$. Most people respond to sound most readily when the predominant frequency is in the range of normal conversation - typically around 1,000 to 2,000 Hz . The acoustical community has defined several "filters," which approximate this sensitivity of our ear and thus, help us to judge the relative loudness of various sounds made up of many different frequencies.

The so-called "A" filter ("A weighting") generally does the best job of matching human response to most environmental noise sources, including natural sounds and sound from common transportation sources. "A-weighted decibels" are abbreviated "dBA." Because of the correlation with our hearing, the U. S. Environmental Protection Agency (EPA) and nearly every other federal and state agency have adopted A-weighted decibels as the metric for use in

[^17]

WWw.hmmh.com
describing environmental and transportation noise. Figure 23 depicts A-weighting adjustments to sound from approximately 20 Hz to $10,000 \mathrm{~Hz}$.

Figure 23. A-Weighting Frequency Response
Source: Extract from Harris, Cyril M., Editor, "Handbook of Acoustical Measurements and Control," McGraw-Hill, Inc., 1991, pg. 5.13; HMMH

As the figure shows, A-weighting significantly de-emphasizes noise content at lower and higher frequencies where we do not hear as well, and has little effect, or is nearly "flat," in for midrange frequencies between 1,000 and $5,000 \mathrm{~Hz}$. All sound pressure levels presented in this document are A-weighted unless otherwise specified.

Figure $\mathbf{2 4}$ depicts representative A-weighted sound levels for a variety of common sounds.

Figure 24. A-Weighted Sound Levels for Common Sounds
Source: HMMH

6.1.3 Maximum A-Weighted Sound Level, Lmax

An additional dimension to environmental noise is that A-weighted levels vary with time. For example, the sound level increases as a car or aircraft approaches, then falls and blends into the background as the aircraft recedes into the distance. The background or "ambient" level continues to vary in the absence of a distinctive source, for example due to birds chirping, insects buzzing, leaves rustling, etc. It is often convenient to describe a particular noise "event" (such as a vehicle passing by, a dog barking, etc.) by its maximum sound level, abbreviated as $L_{\text {max }}$.

Figure 25 depicts this general concept, for a hypothetical noise event with an $L_{\text {max }}$ of approximately 102 dB .

Figure 25. Variation in A-Weighted Sound Level over Time and Maximum Noise Level Source: HMMH

While the maximum level is easy to understand, it suffers from a serious drawback when used to describe the relative "noisiness" of an event such as an aircraft flyover; i.e., it describes only one dimension of the event and provides no information on the event's overall, or cumulative, noise exposure. In fact, two events with identical maximum levels may produce very different total exposures. One may be of very short duration, while the other may continue for an extended period and be judged much more annoying. The next section introduces a measure that accounts for this concept of a noise "dose," or the cumulative exposure associated with an individual "noise event" such as an aircraft flyover.

6.1.4 Sound Exposure Level, SEL

The most commonly used measure of cumulative noise exposure for an individual noise event, such as an aircraft flyover, is the Sound Exposure Level, or SEL. SEL is a summation of the Aweighted sound energy over the entire duration of a noise event. SEL expresses the accumulated energy in terms of the one-second-long steady-state sound level that would contain the same amount of energy as the actual time-varying level.

SEL provides a basis for comparing noise events that generally match our impression of their overall "noisiness," including the effects of both duration and level. The higher the SEL, the more annoying a noise event is likely to be. In simple terms, SEL "compresses" the energy for the noise event into a single second. Figure 26 depicts this compression, for the same hypothetical event shown in Figure 25. Note that the SEL is higher than the $L_{\text {max }}$.

Figure 26. Graphical Depiction of Sound Exposure Level
Source: HM MH

The "compression" of energy into one second means that a given noise event's SEL will almost always will be a higher value than its $L_{\text {max }}$. For most aircraft flyovers, SEL is roughly five to 12 dB higher than $L_{\text {max }}$. Adjustment for duration means that relatively slow and quiet propeller aircraft can have the same or higher SEL than faster, louder jets, which produce shorter duration events.

6.1.5 Equivalent A-Weighted Sound Level, Leq

The Equivalent Sound Level, abbreviated $L_{e q}$, is a measure of the exposure resulting from the accumulation of sound levels over a particular period of interest; e.g., one hour, an eight-hour school day, nighttime, or a full 24-hour day. Leq plots for consecutive hours can help illustrate how the noise dose rises and falls over a day or how a few loud aircraft significantly affect some hours.

Leq may be thought of as the constant sound level over the period of interest that would contain as much sound energy as the actual varying level. It is a way of assigning a single number to a time-varying sound level. Figure 27 illustrates this concept for the same hypothetical event shown in Figure 25 and Figure 26. Note that the $L_{e q}$ is lower than either the $L_{\max }$ or SEL.

Shaded areas represent equivalent passby sound energy

Figure 27. Example of a 15-Second Equivalent Sound Level
Source: HMMH

6.1.6 Day-Night Average Sound Level, DNL or Ldn

The FAA requires that airports use a measure of noise exposure that is slightly more complicated than Leq to describe cumulative noise exposure - the Day-Night Average Sound Level, DNL.

The U.S. EPA identified DNL as the most appropriate means of evaluating airport noise based on the following considerations ${ }^{34}$.

- The measure should be applicable to the evaluation of pervasive long-term noise in various defined areas and under various conditions over long periods.
- The measure should correlate well with known effects of the noise environment and on individuals and the public.
- The measure should be simple, practical, and accurate. In principal, it should be useful for planning as well as for enforcement or monitoring purposes.
- The required measurement equipment, with standard characteristics, should be commercially available.
- The measure should be closely related to existing methods currently in use.
- The single measure of noise at a given location should be predictable, within an acceptable tolerance, from knowledge of the physical events producing the noise.
- The measure should lend itself to small, simple monitors, which can be left unattended in public areas for long periods.

Most federal agencies dealing with noise have formally adopted DNL. The Federal Interagency Committee on Noise (FICON) reaffirmed the appropriateness of DNL in 1992. The FICON

[^18]
summary report stated: "There are no new descriptors or metrics of sufficient scientific standing to substitute for the present DNL cumulative noise exposure metric."

In 2015, the FAA began a multi-year effort to update the scientific evidence on the relationship between aircraft noise exposure and its effects on communities around airports. ${ }^{35}$ This was the most comprehensive study using a single noise survey ever undertaken in the United States, polling communities surrounding 20 airports nationwide. The FAA Reauthorization Act of 2018 under Section 188 and 173, required FAA to complete the evaluation of alternative metrics to the DNL standard within one year. The Section 188 and 173 Report to Congress was delivered on April $14,2020^{36}$ and concluded that while no single noise metric can cover all situations, DNL provides the most comprehensive way to consider the range of factors influencing exposure to aircraft noise. In addition, use of supplemental metrics is both encouraged and supported to further disclose and aid in the public understanding of community noise impacts. The full study supporting these reports was released in January 2021. If changes are warranted in the use of DNL, which DNL level to assess or the use of supplemental metrics, FAA will propose revised policy and related guidance and regulations, subject to interagency coordination, as well as public review and comment.

In simple terms, DNL is the 24 -hour $\mathrm{L}_{\text {eq }}$ with one adjustment; all noises occurring at night (defined as 10 p.m. through 7 a.m.) are increased by 10 dB , to reflect the added intrusiveness of nighttime noise events when background noise levels decrease. In calculating aircraft exposure, this 10 dB increase is mathematically identical to counting each nighttime aircraft noise event ten times.

DNL can be measured or estimated. Measurements are practical only for obtaining DNL values for limited numbers of points, and, in the absence of a permanently installed monitoring system, only for relatively short periods. Most airport noise studies use computer-generated DNL estimates depicted as equal-exposure noise contours (much as topographic maps have contours of equal elevation).

The annual DNL is mathematically identical to the DNL for the average annual day; i.e., a day on which the number of operations is equal to the annual total divided by 365 (366 in a leap year). Figure 28 graphically depicts the manner in which the nighttime adjustment applies in calculating DNL. Figure 29 presents representative outdoor DNL values measured at various U.S. locations.

[^19]

Figure 28. Example of a Day-Night Average Sound Level Calculation
Source: HMMH

Figure 29. Examples of Measured Day-Night Average Sound Levels, DNL
Source: U.S. Environmental Protection Agency, "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety," March 1974, p. 14.

6.2 Aircraft Noise Effects on Human Activity

Aircraft noise can be an annoyance and a nuisance. It can interfere with conversation and listening to television, disrupt classroom activities in schools, and disrupt sleep. Relating these effects to specific noise metrics helps in the understanding of how and why people react to their environment.

6.2.1 Speech Interference

One potential effect of aircraft noise is its tendency to "mask" speech, making it difficult to carry on a normal conversation. The sound level of speech decreases as the distance between a talker and listener increases. As the background sound level increases, it becomes harder to hear speech.

Figure $\mathbf{3 0}$ presents typical distances between talker and listener for satisfactory outdoor conversations, in the presence of different steady A-weighted background noise levels for raised, normal, and relaxed voice effort. As the background level increases, the talker must raise his/her voice, or the individuals must get closer together to continue talking.

Figure 30. Outdoor Speech Intelligibility
Source: U.S. EPA, "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety," March 1974, p.D-5.

Satisfactory conversation does not always require hearing every word; 95% intelligibility is acceptable for many conversations. In relaxed conversation, however, we have higher expectations of hearing speech and generally require closer to 100% intelligibility. Any combination of talker-listener distances and background noise that falls below the bottom line in the figure (which roughly represents the upper boundary of 100% intelligibility) represents an ideal environment for outdoor speech communication. Indoor communication is generally acceptable in this region as well.

One implication of the relationships in Figure $\mathbf{3 0}$ is that for typical communication distances of three or four feet, acceptable outdoor conversations can be carried on in a normal voice as long as the background noise outdoors is less than about 65 dB . If the noise exceeds this level, as might occur when an aircraft passes overhead, intelligibility would be lost unless vocal effort were increased or communication distance were decreased.

Indoors, typical distances, voice levels, and intelligibility expectations generally require a background level less than 45 dB . With windows partly open, housing generally provides about 10 to 15 dB of interior-to-exterior noise level reduction. Thus, if the outdoor sound level is 60 dB or less, there is a reasonable chance that the resulting indoor sound level will afford acceptable interior conversation. With windows closed, 24 dB of attenuation is typical.

6.2.2 Sleep Interference

Research on sleep disruption from noise has led to widely varying observations. In part, this is because (1) sleep can be disturbed without awakening, (2) the deeper the sleep the more noise it takes to cause arousal, (3) the tendency to awaken increases with age, and other factors.
Figure 31 shows a summary of findings on the topic.

Figure 31. Sleep Interference
Source: Federal Interagency Committee on Aircraft Noise (FICAN), "Effects of Aviation Noise on Awakenings from Sleep," June 1997, pg. 6

Figure 31 uses indoor SEL as the measure of noise exposure; current research supports the use of this metric in assessing sleep disruption. An indoor SEL of 80 dBA results in a maximum of 10% awakening. ${ }^{37}$

6.2.3 Community Annoyance

Numerous psychoacoustic surveys provide substantial evidence that individual reactions to noise vary widely with noise exposure level. Since the early 1970s, researchers have determined (and subsequently confirmed) that aggregate community response is generally predictable and relates reasonably well to cumulative noise exposure such as DNL. Figure 32 depicts the widely recognized relationship between environmental noise and the percentage of people "highly annoyed," with annoyance being the key indicator of community response usually cited in this body of research. Separate work by the EPA showed that overall community reaction to a noise environment was also correlated with DNL. Figure 33 depicts this relationship.
As noted above in the discussion of DNL, the full report on the FAA's recent research, polling communities surrounding 20 airports nationwide, was released in January 2021. At the time of

[^20]

WWw.hmmh.com
this reporting, the public review and comment period on that research had ended but FAA had not yet issued new guidance.

Figure 32. Percentage of People Highly Annoyed
Source: FICON, "Federal Agency Review of Selected Airport Noise Analysis Issues," September 1992

Figure 33. Community Reaction as a Function of Outdoor DNL
Source: Wyle Laboratories, Community Noise, prepared for the U.S. EPA, Office of Noise Abatement and Control, Washington, D.C., December 1971, pg. 63

Data summarized in the figure suggest that little reaction would be expected for intrusive noise levels five decibels below the ambient, while widespread complaints can be expected as

intruding noise exceeds background levels by about five decibels. Vigorous action is likely when levels exceed the background by 20 dB .

6.3 Noise Propagation

This section presents information sound-propagation effect due to weather, source-to-listener distance, and vegetation.

6.3.1 Weather-Related Effects

Weather (or atmospheric) conditions that can influence the propagation of sound include humidity, precipitation, temperature, wind, and turbulence (or gustiness). The effect of wind turbulence in particular - is generally more important than the effects of other factors. Under calm-wind conditions, the importance of temperature (in particular vertical "gradients") can increase, sometimes to very significant levels. Humidity generally has little significance relative to the other effects.

nMMM

6.3.2 Influence of Humidity and Precipitation

Humidity and precipitation rarely effect sound propagation in a significant manner. Humidity can reduce propagation of high-frequency noise under calm-wind conditions. This is called "Atmospheric absorption." In very cold conditions, listeners often observe that aircraft sound "tinny," because the dry air increases the propagation of high-frequency sound. Rain, snow, and fog also have little if any noticeable effect on sound propagation. A substantial body of empirical data supports these conclusions. ${ }^{38}$

6.3.3 Influence of Temperature

The velocity of sound in the atmosphere is dependent on the air temperature. ${ }^{39} \mathrm{As}$ a result, if the temperature varies at different heights above the ground, sound will travel in curved paths rather than straight lines. During the day, temperature normally decreases with increasing height. Under such "temperature lapse" conditions, the atmosphere refracts ("bends") sound waves upwards and an acoustical shadow zone may exist at some distance from the noise source.

Under some weather conditions, an upper level of warmer air may trap a lower layer of cool air. Such a "temperature inversion" is most common in the evening, at night, and early in the morning when heat absorbed by the ground during the day radiates into the atmosphere. ${ }^{40}$ The effect of an inversion is just the opposite of lapse conditions. It causes sound propagating through the atmosphere to refract downward.

The downward refraction caused by temperature inversions often allows sound rays with originally upward-sloping paths to bypass obstructions and ground effects, increasing noise levels at greater distances. This type of effect is most prevalent at night, when temperature

[^21]

WWw.hmmh.com
inversions are most common and when wind levels often are very low, limiting any confounding factors. ${ }^{41}$ Under extreme conditions, one study found that noise from ground-borne aircraft might be amplified 15 to 20 dB by a temperature inversion. In a similar study, noise caused by an aircraft on the ground registered a higher level at an observer location 1.8 miles away than at a second observer location only 0.2 miles from the aircraft. ${ }^{42}$

6.3.4 Influence of Wind

Wind has a strong directional component that can lead to significant variation in propagation. In general, receivers that are downwind of a source will experience higher sound levels, and those that are upwind will experience lower sound levels. Wind perpendicular to the source-toreceiver path has no significant effect.

The refraction caused by wind direction and temperature gradients is additive. ${ }^{43}$ One study suggests that for frequencies greater than 500 Hz , the combined effects of these two factors tends towards two extreme values: approximately 0 dB in conditions of downward refraction (temperature inversion or downwind propagation) and -20 dB in upward refraction conditions (temperature lapse or upwind propagation). At lower frequencies, the effects of refraction due to wind and temperature gradients are less pronounced. ${ }^{44}$

Wind turbulence (or "gustiness") can also affect sound propagation. Sound levels heard at remote receiver locations will fluctuate with gustiness. In addition, gustiness can cause considerable attenuation of sound due to effects of eddies traveling with the wind. Attenuation due to eddies is essentially the same in all directions, with or against the flow of the wind, and can mask the refractive effects discussed above. ${ }^{45}$

6.3.5 Distance-Related Effects

People often ask how distance from an aircraft to a listener affects sound levels. Changes in distance may be associated with varying terrain, offsets to the side of a flight path, or aircraft altitude. The answer is a bit complex because distance affects the propagation of sound in several ways.

The principal effect results from the fact that any emitted sound expands in a spherical fashion like a balloon - as the distance from the source increases, resulting in the sound energy being spread out over a larger volume. With each doubling of distance, spherical spreading reduces instantaneous or maximum level by approximately six decibels and SEL by approximately three decibels.

[^22]

WWw.hmmh.com

6.3.6 Vegetation-Related Effects

Sound can be scattered and absorbed as it travels through vegetation. This results in a decrease in sound levels. The literature on the effect of vegetation on sound propagation contains several approaches to calculating its effect. Though these approaches differ in some aspects, they agree on the following:

- The vegetation must be dense and deep enough to block the line of sight
- The noise reduction is greatest at high frequencies and least at low frequencies

The International Standard ISO 9613-2 ${ }^{46}$ provides a useful example of the types of calculations employed in these methods. Originally developed for industrial noise sources, ISO 9613-2 is well-suited for the evaluation of ground-based aircraft noise sources under favorable meteorological conditions for sound propagation. ISO 9613-2's methodology for calculating sound propagation includes geometric dispersion from acoustical point sources, atmospheric absorption, the effects of areas of hard and soft ground, screening due to barriers, and reflections. The attenuation provided by dense foliage varies by octave band and by distance as shown in Table 31.

For propagation through less than 10 m of dense foliage, no attenuation is assumed. For propagation through 10 m to 20 m of dense foliage, the total attenuation is shown in the first row of Table 31. For distances between 20 m and 200 m , the total attenuation is computed by multiplying the distance of propagation through dense foliage by the dB / m values shown in the second row of Table 31.

Table 31. Dense Foliage Noise Attenuation
Source: ISO 9613-2, Table A. 1

Propagation Distance	Nominal Midband Frequency (Hz)								
	$\mathbf{6 3}$	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 , 0 0 0}$	$\mathbf{2 , 0 0 0}$	$\mathbf{4 , 0 0 0}$	$\mathbf{8 , 0 0 0}$	
10 m to 20 m (dB Attenuation)	0	0	1	1	1	1	2	3	
20 m to 200 m (dB/m Attenuation)	0.02	0.03	0.04	0.05	0.06	0.08	0.09	0.12	

ISO 9613-2 assumes a moderate downwind condition. The equations in the ISO Standard also hold, equivalently, for average propagation under a well-developed moderate ground-based temperature inversion, such as commonly occurs on clear, calm nights. In either case, the sound is refracted downward. The radius of this curved path is assumed to be 5 km . With this curved sound path, only portions of the sound path may travel through the dense foliage, as illustrated by Figure 34. Thus, the relative locations of the source and receiver, the dimensions of the volume of dense foliage, and the contours of the intervening terrain are essential to the estimation of the noise attenuation.

[^23]

Figure 34. Downward Refracting Sound Path
source: ISO 9613-2
As illustrated in Figure 34, the foliage only provides attenuation if the sound path passes through the foliage. For aircraft in the air, the sound will pass through little, if any foliage. Additionally, either the noise source or receiver must be near the foliage for it to have an effect.

nunun

Appendix A - Emissions Calculations

NONROAD Emissions (TPY)

$$
\begin{array}{cc}
\text { OVES ONROAD } \\
13 & 11
\end{array}
$$

 10000 --

[^24]Units for Non-Greenhouse Gases Emission: Short Ton
Units for Greenhouse Gases (CO2, CH4, and N2O) Emission: Metric Ton

On-Road Vehicles: MOVES3.0.2, revised September 2021
Non-Road Equipment: MOVES3.0. 2 September 2021
In addition to the overall project size dimensions (e.g., Length and width) provided by the user, an additional 10 ft length and 10 ft width is added to account for disturbance areas.
The number of employees is based on the higher of two methods: (1) number of equipment, and (2) multiply the project cost in million by 11.
The average employee travels 30 miles round-trip from home to construction site each day

The average on-road material delivery round-trip distance per truck is 40 miles per day.
For calculating fugitive, re-entrained PM emissions from on-road and non-road material delivery and handling equipment, a nominal VMT of 5 miles is used for each vehicle per day.
In deriving emission factors from NONROAD, the horsepower for each equipment represents the most popular in each equipment category
The total length of each modeled scenario is used to define the number of days associated with vehicle/equipment evaporative emissions.
The choice of location and season are assumed to adequately represent differences in fuel characteristics affecting emissions.
Only two seasons (Summer and Winter) are used to represent all seasons.
14 U.S. Counties are used to represent all other counties in the U.S. (all other counties are mapped to the 14).
The default methods assume that all construction equipment use diesel as well as heavy-duty on-road vehicles, while passenger vehicles (including motorcycles) use gasoline.
Fugitive emissions are only modeled for:
Asphalt drying
sphalt storage and batchin
Concrete mixing/batching
Soil handling
Unstabilized land and wind erosion
Material movement (unpaved roads)
Material movement (paved roads)
On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
oncrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
rack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)

 $\begin{array}{rrrrrrrrrrr}0.052322 & 0.154556 & 1072.698 & 0.018641 & 0.003286 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.002136 & 0.059875 & 341.0253 & 0.010196 & 0.002025 & 0.0536 & 0.001868 & 3.72 \mathrm{E}-05 & 3.97 \mathrm{E}-05 & 3.51 \mathrm{E}-05 & 0.000983 \\ 5.601179 & 0.000167 & 3.33 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.002136 & 0.059875 & 341.0253 & 0.010196 & 0.002025 & 0.0536 & 0.001868 & 3.72 \mathrm{E}-05 & 3.97 \mathrm{E}-05 & 3.51 \mathrm{E}-05 & 0.000983 & 5.601179 & 0.000167 \\ 0.052322 & 0.154556 & 1072.698 & 0.018641 & 0.003286 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{rrrrrrrrrrrr}0.052322 & 0.154556 & 1072.698 & 0.018641 & 0.003286 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.002136 & 0.059875 & 341.0253 & 0.010196 & 0.002025 & 0.131177 & 0.004571 & 9.11 \mathrm{E}-05 & 9.7 \mathrm{E}-05 & 8.58 \mathrm{E}-05 & 0.002407 & 13.70785 \\ 0.0 .00041 & 8.14 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrrr}0.002136 & 0.059875 & 341.0253 & 0.010196 & 0.002025 & 0.131177 & 0.004571 & 9.11 \mathrm{E}-05 & 9.7 \mathrm{E}-05 & 8.58 \mathrm{E}-05 & 0.002407 & 13.70785 \\ 0.052322 & 0.154556 & 1072.698 & 0.018641 & 0.003286 & 0.003528 & 0.005521 & 9.18 \mathrm{E}-06 & 0.000145 & 0.000133 & 0.000394 & 2.735015\end{array} 4.75 \mathrm{E}-05 \quad 8.148 \mathrm{E}-05$ $\begin{array}{lllllllllllll}0.052322 & 0.154556 & 1072.698 & 0.018641 & 0.003286 & 0.003528 & 0.005521 & 9.18 \mathrm{E}-06 & 0.000145 & 0.000133 & 0.000394 & 2.735015 & 4.75 \mathrm{E}-05 \\ 8.38 \mathrm{E}-06 \\ 0.052322 & 0.154556 & 1072.698 & 0.018641 & 0.003286 & 0.001881 & 0.002943 & 4.9 \mathrm{E}-06 & 7.73 \mathrm{E}-05 & 7.11 \mathrm{E}-05 & 0.00021 & 1.457965 & 2.53 \mathrm{E}-05 \\ 4.47 \mathrm{E}-06\end{array}$ | 0.052322 | 0.154556 | 1072.698 | 0.018641 | 0.003286 | 0.001881 | 0.002943 | $4.9 \mathrm{E}-06$ | $7.73 \mathrm{E}-05$ | $7.11 \mathrm{E}-05$ | 0.00021 | 1.457965 | $2.53 \mathrm{E}-05$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $4.47 \mathrm{E}-06$ $\begin{array}{llllllllllll}0.002136 & 0.059875 & 341.0253 & 0.010196 & 0.002025 & 6.529779 & 0.227517 & 0.004533 & 0.004831 & 0.004273 & 0.119802 & 682.3532\end{array} 0.020401 \quad 0.004052$ $\begin{array}{lllllllllllll}0.086838 & 0.209892 & 1735.582 & 0.02366 & 0.002802 & 0.000412 & 0.000788 & 1.03 \mathrm{E}-06 & 1.66 \mathrm{E}-05 & 1.53 \mathrm{E}-05 & 3.7 \mathrm{E}-05 & 0.306106 & 4.17 \mathrm{E}-06 \\ 4.94 \mathrm{E}-07 \\ & & & 6.720377 & 0.243207 & 0.004676 & 0.005206 & 0.004614 & 0.123834 & 706.1614 & 0.021055 & 0.00418\end{array}$

2023 Access RoćConcrete F Concrete Truck 2023 Access Ró Concrete FPickup Truck 2023 Access Ro: Concrete F Rubber Tired Loader 2023 Access RoćConcrete FSlip Form Paver 2023 Access RocConcrete F Surfacing Equipment (Grooving) 2023 Access Roc Curbing Concrete Truck 2023 Access Roc Curbing Curb/Gutter Paver 2023 Access RoéCurbing Other General Equipment 2023 Access RǒCurbing Pickup Truck 2023 Access Roc Drainage - Dozer 2023 Access Roc Drainage - Dump Truck 2023 Access Roo Drainage - Excavator 2023 Access Ro © Drainage - Loader 2023 Access Roa Drainage - Other General Equipment 2023 Access Ro Drainage - Pickup Truck
2023 Access Ro Drainage - Roller 2023 Access Ró Drainage - Roller 2023 Access Roc Drainage - Dump Truck 2023 Access Ro \quad Drainage - Loader 2023 Access Roc Drainage - Other General Equipment 2023 Access Ró Drainage - Pickup Truck 2023 Access Roc Drainage - Tractors/Loader/Backhoe 2023 Access RoćDust Contr Water Truck 2023 Access Roe Excavatior Dozer 2023 Access Roé Excavatior Dump Truck (12 cy) 2023 Access Ro Excavatior Pickup Truck 2023 Access Roé Excavatior Roller 2023 Access RoćExcavatior Dozer 2023 Access Roé Excavatior Dump Truck (12 cy) 2023 Access Roz Excavatior Excavator 2023 Access Roc Excavatior Pickup Truck 2023 Access RoćExcavatior Roller 2023 Access Ró Excavatior Scraper 2023 Access Rǒ Excavatior Dozer 2023 Access RoéFencing Concrete Truck 2023 Access Roć Fencing Dump Truck 2023 Access Roć Fencing Other General Equipment 2023 Access Ro天 Fencing Pickup Truck 2023 Access Rö Fencing Skid Steer Loader 2023 Access Roć Fencing Tractors/Loader/Backhoe 2023 Access Rō̄Grading 2023 Access Ro Grading Grader 2023 Access Rǒ Grading Roller
2023 Access Roč Hydroseec Hydroseed
2023 Access Roa Hydroseec Hydroseeder
2023 Access Roc Hydroseec Off-Road Truck 2023 Access Roc Markings Flatbed Truck 2023 Access Roz Markings Other General Equipment 2023 Access Roć Markings Pickup Truck 2023 Access RozSidewalks Concrete Truck 2023 Access Rósidewalks Dump Truck 2023 Access Ro $\begin{aligned} \\ \text { Sidewalks Pickup Truck }\end{aligned}$ 2023 Access Roa Sidewalks Tractors/Loader/Backhoe 2023 Access RoéSidewalks Vibratory Compactor 2023 Access Ró Soil Erosio Other General Equipment 2023 Access Roz Soil Erosio Pickup Truck 2023 Access RǒSoil Erosio Pumps
2023 Access Ro=:Soil Erosio Tractors/Loader/Backhoe 2023 Access Roa Street Ligh Dump Truck 2023 Access Ro: Street Ligh Loader 2023 Access Roi Street Ligh Other General Equipment 2023 Access RṓStreet Ligh Pickup Truck 2023 Access RoéStreet Ligh Skid Steer Loader 2023 Access Rō Street Ligh Tractors/Loader/Backhoe 2023 Access Roi Subbase P Dozer
2023 Access RoáSubbase P Dump Truck (12 cy) 2023 Access Roi Subbase P Pickup Truck 2023 Access Roé Subbase P Roller 2023 Access Roa Topsoil Ple Dozer
2023 Access RoćTopsoil Ple Dump Truck 2023 Access Rȯ Topsoil Plé Dump Truck
2023 Access RoćTopsoil Plé Pickup Truck 2023 Access RoءTopsoil Plę Pickup Truck
2023 Access Rǫ́Tree Plant Flatbed Truck 2023 Access Roć Tree Plant Other General Equipment 2023 Access RosTree Plant Pickup Truck 2023 Access RoćTree Plant Tractors/Loader/Backhoe 2023 Building - : Concrete FBackhoe 2023 Building - Concrete F Concrete Ready Mix Trucks 2023 Building - Concrete FFork Truck 2023 Building - : Concrete F Tool Truck 2023 Building - : Concrete FTractor Trailer- Material Deliver 2023 Building - Constructi Survey Crew Trucks 2023 Building - : Constructi Tractor Trailers Temp Fac. 2023 Building - : Exterior W Fork Truck 2023 Building - : Exterior WMan Lift 2023 Building - : Exterior WTool Truck

Off-highway Trucks600 Diesel Off-highway Trucks600 Tractors/Loaders/Backhoes175 Diesel Pavers175 Other Construction Equipment25 Diesel
Off-highway Trucks600 $\begin{array}{ll}\text { Off-highway Trucks600 } & \text { Diesel } \\ \text { Pavers175 } & \text { Diesel }\end{array}$ Other Construction Equipment17 Diesel Off-highway Trucks600 Crawler Tractor/Dozers Exf-highway Tr Excavators175
Tractors/Loaders Tractors/Loaders/Backhoes175 Di Other Construction Equipment17 Diesel
Off-highway Trucks600 Off-highway Trucks600 Rollers100

Off-highway Trucks600

$\begin{array}{ll}\text { Tractors/Loaders/Backhoes175 } & \text { Diesel } \\ \text { Diesel }\end{array}$ Other Construction Equipment17 Off-highway Trick $\begin{array}{ll}\text { Tractors/Loaders/Backhoes100 } & \text { Diesel } \\ \text { Diesel }\end{array}$ Off-highway Trucks600 Crawler Tractor/Dozers175 Off-highway Trucks600 Off-highwa
Rollers100
Rollers100
Crawler Tractor/Dozers175
Off-highway Trucks60 Excavators175 Off-highway Trucks600 Rollers100 Rollers100
Scrapers600 Scrapers600
Crawler Tractor/Dozers175 Off-highway Trucks600 Off-highway Trucks600
Off-highway Trucks600 Off-highway Trucks60 Diesel
Other Construction Equipment17 Diesel Other Construction Equipment17 Diesel
Off-highway Trucks600 Off-highway Trucks600 Skid Steer Loaders75
Tractors/Loaders/Backhoes100
Crawler Tractor/Dozers175 Crawler Tractor/Dozers175 Graders300

Rollers100

Other Construction Equipment60 Di Off-highway Trucks600 Off-highway Trucks600 Other Construction Equipment17 Diesel Off-highway Trucks600 Off-highway Trucks600 Off-highway Trucks600 Off-highway Trucks600 Tractors/Loaders/Backhoes100 $\begin{array}{ll}\text { Diesel } \\ \text { Diesel }\end{array}$ Plate Compactors6 Other Construction Equipment17 Diesel
Off-highay Trucks600 Off-highway Trucks600 Diesel
Other Construction Equipment11 Diesel Tractors/Loaders/Backhoes100 D Off-highway Trucks600

Tractors/Loaders/Backhoes175

 Other Construction Equipment17 DiesOff-highway Trucks600 Dies Skid Steer Loaders75 Tractors/Loaders/Backhoes100
Crawler Tractor/Dozers
Off-highway Trucks600 Off-highway Trucks60 Off-highway
Rollers100
Crawler Tractor/Dozers175
Off-highway Trucks600 Off-highway Trucks600 Off-highway Trucks600 Other Construction Equipment17 Diesel Off-highway Trucks600 $\begin{array}{ll}\text { Tractors/Loaders/Backhoes100 } & \text { Diesel } \\ \text { Tractors/Loaders/Backhoes100 } & \text { Diesel }\end{array}$ Off-highway Trucks600 Other Construction Equipment10 Diesel Off-highway Trucks600 Off-highway Trucks600 Off-highway Trucks600 Off-highway Trucks600 Other Construction Equipment10 Diesel Rough Terrain Forklifts75 Diesel Off-highway Trucks600

$\begin{array}{llllllllllllllllllllll}22.2 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000633 & 0.001951 & 4.650097 & 1.24 \mathrm{E}-05 & 0.000134 & 0.00013 & 0.000137\end{array}$ $\begin{array}{llllllllllllllllllllllll}10.656 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.000268 & 0.000827 & 0.474369 & 1.34 \mathrm{E}-06 & 6.52 \mathrm{E}-05 & 6.33 \mathrm{E}-05 & 4.84 \mathrm{E}-05\end{array}$ | 15.984 | 0.073093 | 0.225249 | 536.7836 | 0.001433 | 0.015502 | 0.015037 | 0.015837 | 0.000456 | 0.001405 | 3.34807 | $8.94 E-06$ | $9.67 E-05$ | $9.38 E-05$ | $9.88 \mathrm{E}-05$ |
| :--- | $\begin{array}{lllllllllllllllllll}5.328 & 1.177854 & 2.091966 & 625.6269 & 0.001906 & 0.256407 & 0.248715 & 0.31546 & 0.000714 & 0.001269 & 0.379382 & 1.16 \mathrm{E}-06 & 0.000155 & 0.000151 & 0.000191\end{array}$

5.328	1.499691	3.765005	595.1478	0.002188	0.172084	0.166922	0.352846	0.00013	0.000326	0.051557	$1.9 \mathrm{E}-07$	$1.49 \mathrm{E}-05$	$1.45 \mathrm{E}-05$
48	0.073093	0.225249	536.7836	0.001433	0.015502	0.015037	0.015837	0.001369	0.004219	10.05426	$2.68 \mathrm{E}-05$	0.00029	0.000282

$\begin{array}{lllllllllllllllllll}48 & 0.209737 & 0.546697 & 536.7345 & 0.001474 & 0.052645 & 0.051065 & 0.03349 & 0.001146 & 0.002987 & 2.932225 & 8.05 \mathrm{E}-06 & 0.000288 & 0.000279 & 0.000183\end{array}$ $\begin{array}{llllllllllllllllllll}48 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.001207 & 0.003725 & 2.136799 & 6.01 \mathrm{E}-06 & 0.000294 & 0.000285 & 0.000218\end{array}$

 $\begin{array}{lllllllllllllllllllllll}38.72 & 0.173769 & 0.459721 & 536.7568 & 0.00146 & 0.044767 & 0.043424 & 0.025781 & 0.000766 & 0.002026 & 2.365427 & 6.44 \mathrm{E}-06 & 0.000197 & 0.000191 & 0.000114\end{array}$ $\begin{array}{lllllllllllllll}38.72 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.001104 & 0.003403 & 8.110439 & 2.16 \mathrm{E}-05 & 0.000234 & 0.000227 & 0.000239 \\ 38.72 & 0.114838 & 0.351797 & 536.7809 & 0.001438 & 0.028734 & 0.027872 & 0.01734 & 0.000506 & 0.00155 & 2.365533 & 6.34 \mathrm{E}-06 & 0.000127 & 0.000123 & 7.64 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrrrr}38.72 & 0.114838 & 0.351797 & 536.7809 & 0.001438 & 0.028744 \\ 38.72 & 1.177854 & 2.091966 & 625.6269 & 0.001906 & 0.256407 & 0.248715 & 0.31546 & 0.005191 & 0.009219 & 2.757067 & 8.4 \mathrm{E}-06 & 0.00113 \\ 0.0001096 & 0.00139\end{array}$ $\begin{array}{rrrrrrrrrrrrrr}38.72 & 1.177854 & 2.091966 & 625.6269 & 0.001906 & 0.256407 & 0.248715 & 0.31546 & 0.005191 & 0.009219 & 2.757067 & 8.4 \mathrm{E}-06 & 0.00113 & 0.001096 \\ 38.72 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.000974 & 0.003004 & 1.723684 & 4.85 \mathrm{E}-06 & 0.000237 & 0.00023\end{array} 0.000176$ \begin{tabular}{rrrrrrrrrrrrr}
38.72 \& 0.30314 \& 0.935436 \& 536.6725 \& 0.00151 \& 0.073779 \& 0.071565 \& 0.054797 \& 0.000974 \& 0.003004 \& 1.723684 \& $4.85 \mathrm{E}-06$ \& 0.000237

38.72 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.001104 \& 0.003403 \& 8.110439 \& $2.16 \mathrm{E}-05$ \& 0.000234

\hline

 $\begin{array}{llllllllllllll}38.72 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.001104 & 0.003403 & 8.110439 & 2.16 \mathrm{E}-05 & 0.000234 & 0.000227 \\ 38.72 & 0.504707 & 1.277084 & 596.0359 & 0.001638 & 0.076422 & 0.074129 & 0.042273 & 0.001271 & 0.003216 & 1.50095 & 4.12 \mathrm{E}-06 & 0.000192 & 0.000187 \\ 0.000106\end{array}$ $\begin{array}{lllllllllllllll}38.72 & 0.504707 & 1.277084 & 596.0359 & 0.001638 & 0.076422 & 0.074129 & 0.042273 & 0.001271 & 0.003216 & 1.50095 & 4.12 \mathrm{E}-06 & 0.000192 & 0.000087 & 0.00133\end{array}$

21.51111 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.000614 \& 0.001891 \& 4.5058 \& $1.2 \mathrm{E}-05$ \& 0.00013

21.51111 \& 1.177854 \& 2.091966 \& 625.6269 \& 0.001906 \& 0.256407 \& 0.248715 \& 0.31546 \& 0.002884 \& 0.005122 \& 1.531704 \& $4.67 \mathrm{E}-06$ \& 0.000628

0.000609 \& 0.000133

\hline

 $\begin{array}{llllllllllllll}21.51111 & 1.177854 & 2.091966 & 625.6269 & 0.001906 & 0.256407 & 0.248715 & 0.31546 & 0.002884 & 0.005122 & 1.531704 & 4.67 \mathrm{E}-06 & 0.000628 & 0.000609\end{array} 0.007 \mathrm{~F}-\mathrm{L}$ $\begin{array}{llllllllllllllll}21.51111 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000614 & 0.001891 & 4.5058 & 1.2 \mathrm{E}-05 & 0.00013 & 0.000126 & 0.000133\end{array}$ $\begin{array}{lllllllllllllllll}21.51111 & 2.836111 & 2.782112 & 694.7262 & 0.002118 & 0.374745 & 0.363503 & 0.436618 & 0.001412 & 0.001385 & 0.345941 & 1.05 E-06 & 0.000187 & 0.000181 & 0.000217\end{array}$

2880 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.082144 \& 0.253143 \& 603.2558 \& 0.00161 \& 0.017422 \& 0.016899 \& 0.017798

\hline

8.88 \& 0.173769 \& 0.459721 \& 536.7568 \& 0.00146 \& 0.044767 \& 0.043424 \& 0.025781 \& 0.000176 \& 0.000465 \& 0.542484 \& $1.48 \mathrm{E}-06$ \& $4.52 \mathrm{E}-05$ \& $4.39 \mathrm{E}-05$ \& $2.61 \mathrm{E}-05$

\hline

8.88 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.000253 \& 0.000781 \& 1.860039 \& $4.96 \mathrm{E}-06$ \& $5.37 \mathrm{E}-05$ \& $5.21 \mathrm{E}-05$ \& $5.49 \mathrm{E}-05$

\hline

8.88 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.000253 \& 0.000781 \& 1.860039 \& $4.96 \mathrm{E}-06$ \& $5.37 \mathrm{E}-05$ \& $5.21 \mathrm{E}-05$

$5.49 \mathrm{E}-05$

\hline

4.098462 \& 0.504707 \& 1.277084 \& 596.0359 \& 0.001638 \& 0.076422 \& 0.074129 \& 0.042273 \& 0.000135 \& 0.00034 \& 0.158874 \& $4.36 \mathrm{E}-07$ \& $2.04 \mathrm{E}-05$ \& $1.98 \mathrm{E}-05$

$1.13 \mathrm{E}-05$

\hline
\end{tabular}

 $\begin{array}{llllllllllllll}5.328 & 0.114838 & 0.351797 & 536.7809 & 0.001438 & 0.028734 & 0.027872 & 0.01734 & 6.96 \mathrm{E}-05 & 0.000213 & 0.325505 & 8.72 \mathrm{E}-07 & 1.74 \mathrm{E}-05 & 1.69 \mathrm{E}-05 \\ 1.05 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}5.328 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000152 & 0.000468 & 1.116023 & 2.98 \mathrm{E}-06 & 3.22 \mathrm{E}-05 & 3.13 \mathrm{E}-05 & 3.29 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}5.328 & 0.504707 & 1.277084 & 596.0359 & 0.001638 & 0.076422 & 0.074129 & 0.042273 & 0.000175 & 0.000443 & 0.206536 & 5.67 \mathrm{E}-07 & 2.65 \mathrm{E}-05 & 2.57 \mathrm{E}-05 & 1.46 \mathrm{E}-05\end{array}$ $\begin{array}{rllllllllllllllll}6.66 & 0.281977 & 0.70373 & 536.7116 & 0.001506 & 0.047742 & 0.046309 & 0.040601 & 0.000733 & 0.001829 & 1.394842 & 3.91 \mathrm{E}-06 & 0.000124 & 0.00012 & 0.000106\end{array}$ $2.507294 \quad 0.1737690 .459721536 .7568$ $\begin{array}{llllllllllllll}13.33333 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.00038 & 0.001172 & 2.792851 & 7.45 \mathrm{E}-06 & 8.07 \mathrm{E}-05 & 7.82 \mathrm{E}-05 \\ 8.24 E-05\end{array}$ $\begin{array}{llllllllllllllllllll}53.33333 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.001521 & 0.004688 & 11.1714 & 2.98 \mathrm{E}-05 & 0.000323 & 0.000313 & 0.00033\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}53.33333 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.001341 & 0.004138 & 2.374221 & 6.68 \mathrm{E}-06 & 0.000326 & 0.000317 & 0.000242\end{array}$ $\begin{array}{lllllllllllllllllllll}53.33333 & 3.515177 & 4.233588 & 693.9764 & 0.002207 & 0.495546 & 0.480679 & 0.685836 & 0.003255 & 0.00392 & 0.642585 & 2.04 \mathrm{E}-06 & 0.000459 & 0.000445 & 0.000635\end{array}$ $\begin{array}{llllllllllllllllllllll}0.21 & 53.33333 & 3.515177 & 4.233588 & 693.9764 & 0.002207 & 0.495546 & 0.480679 & 0.685836 & 0.003255 & 0.00392 & 0.642585 & 2.04 \mathrm{E}-06 & 0.000459 & 0.000445 & 0.000635\end{array}$ $\begin{array}{lllllllllllllllllllll}0.21 & 53.33333 & 2.836111 & 2.782112 & 694.7262 & 0.002118 & 0.374745 & 0.363503 & 0.436618 & 0.003501 & 0.003435 & 0.857706 & 2.61 \mathrm{E}-06 & 0.000463 & 0.000449 & 0.000539\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 2.9548 & 0.173769 & 0.459721 & 536.7568 & 0.00146 & 0.044767 & 0.043424 & 0.025781 & 5.84 \mathrm{E}-05 & 0.000155 & 0.18051 & 4.91 \mathrm{E}-07 & 1.51 \mathrm{E}-05 & 1.46 \mathrm{E}-05 & 8.67 \mathrm{E}-06\end{array}$ \begin{tabular}{lllllllllllllll}
0.59 \& 2.9548 \& 0.096096 \& 0.281619 \& 536.7688 \& 0.001445 \& 0.021526 \& 0.020881 \& 0.021383 \& $5.54 \mathrm{E}-05$ \& 0.000162 \& 0.309453 \& $8.33 \mathrm{E}-07$ \& $1.24 \mathrm{E}-05$ \& $1.2 \mathrm{E}-05$

\hline

 $1.23 \mathrm{E}-05$

0.59 \& 2.9548 \& 0.504707 \& 1.277084 \& 596.0359 \& 0.001638 \& 0.076422 \& 0.074129 \& 0.042273 \& $9.7 \mathrm{E}-05$ \& 0.000245 \& 0.11454 \& $3.15 \mathrm{E}-07$ \& $1.47 \mathrm{E}-05$

\hline \& $1.42 \mathrm{E}-05$ \& $8.12 \mathrm{E}-06$

0.59 \& 2.662 \& 0.730929 \& 1.569261 \& 536.5382 \& 0.001634 \& 0.114059 \& 0.110638 \& 0.100008 \& 0.000759 \& 0.00163 \& 0.557338 \& $1.7 \mathrm{E}-06$ \& 0.00118

 $\begin{array}{llllllllllllllll}0.59 & 2.662 & 0.730929 & 1.569261 & 536.5382 & 0.001634 & 0.114059 & 0.110638 & 0.100008 & 0.000759 & 0.00163 & 0.557338 & 1.7 \mathrm{E}-06 & 0.000118 & 0.000115 & 0.000104\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 2.662 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 7.59 \mathrm{E}-05 & 0.000234 & 0.557593 & 1.49 \mathrm{E}-06 & 1.61 \mathrm{E}-05 & 1.56 \mathrm{E}-05 \\ 1.65 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 32.91429 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000939 & 0.002893 & 6.894352 & 1.84 \mathrm{E}-05 & 0.000199 & 0.000193 & 0.000203\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 32.91429 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.000828 & 0.002554 & 1.465234 & 4.12 \mathrm{E}-06 & 0.000201 & 0.000195 & 0.00015\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 32.91429 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000939 & 0.002893 & 6.894352 & 1.84 \mathrm{E}-05 & 0.000199 & 0.000193 & 0.000203\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 96 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.002738 & 0.008438 & 20.10853 & 5.37 \mathrm{E}-05 & 0.000581 & 0.000563 & 0.000593\end{array}$ 960.0730930 .225249536 .78360 .0014330 .0155020 .0150370 .0158370 .0027380 .008438 20.10853 $5.37 \mathrm{E}-050.0005810 .0005630 .000593$ 960.0730930 .225249536 .78360 .0014330 .0155020 .0150370 .0158370 .002738 0.008438 20.10853 5.37E-05 0.0005810 .0005630 .000593 $\begin{array}{lllllllllllllllll}96 & 2.836111 & 2.782112 & 694.7262 & 0.002118 & 0.374745 & 0.363503 & 0.436618 & 0.006303 & 0.006183 & 1.54387 & 4.71 \mathrm{E}-06 & 0.000833 & 0.000808 & 0.00097\end{array}$

96 \& 2.565572 \& 4.203341 \& 588.0264 \& 0.002162 \& 0.262442 \& 0.254569 \& 0.816969 \& 0.0007 \& 0.001148 \& 0.160544 \& $5.9 \mathrm{E}-07$ \& $7.17 \mathrm{E}-05$ \& $6.95 \mathrm{E}-05$ \& 0.000223

\hline

2.4 \& 0.30314 \& 0.935436 \& 536.6725 \& 0.00151 \& 0.073779 \& 0.071565 \& 0.054797 \& $6.03 \mathrm{E}-05$ \& 0.000186 \& 0.10684 \& $3.01 \mathrm{E}-07$ \& $1.47 \mathrm{E}-05$ \& $1.42 \mathrm{E}-05$ \& $1.09 \mathrm{E}-05$

\hline
\end{tabular} $\begin{array}{lllllllllllllllllllllll}4.8 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000137 & 0.000422 & 1.005426 & 2.68 \mathrm{E}-06 & 2.9 \mathrm{E}-05 & 2.82 \mathrm{E}-0 \mathrm{O} & 1.09 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}2.4 & 2.836111 & 2.782112 & 694.7262 & 0.002118 & 0.374745 & 0.363503 & 0.436618 & 0.000158 & 0.000155 & 0.038597 & 1.18 \mathrm{E}-07 & 2.08 \mathrm{E}-05 & 2.02 \mathrm{E}-05 \\ 2.43 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}32 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000913 & 0.002813 & 6.702842 & 1.79 \mathrm{E}-05 & 0.000194 & 0.000188 & 0.000198\end{array}$ $\begin{array}{lllllllllllllllllll}32 & 1.177854 & 2.091966 & 625.6269 & 0.001906 & 0.256407 & 0.248715 & 0.31546 & 0.00429 & 0.007619 & 2.278568 & 6.94 \mathrm{E}-06 & 0.000934 & 0.000906 & 0.001149\end{array}$ $\begin{array}{lllllllllllllllll}32 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.000805 & 0.002483 & 1.424533 & 4.01 \mathrm{E}-06 & 0.000196 & 0.00019 & 0.000145\end{array}$ $\begin{array}{lllllllllllllllllll}32 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000913 & 0.002813 & 6.702842 & 1.79 \mathrm{E}-05 & 0.000194 & 0.000188 & 0.000198\end{array}$ $\begin{array}{lllllllllllllllll}32 & 3.515177 & 4.233588 & 693.9764 & 0.002207 & 0.495546 & 0.480679 & 0.685836 & 0.001953 & 0.002352 & 0.385551 & 1.23 \mathrm{E}-06 & 0.000275 & 0.000267 & 0.000381\end{array}$ $\begin{array}{lllllllllllllllll}32 & 2.836111 & 2.782112 & 694.7262 & 0.002118 & 0.374745 & 0.363503 & 0.436618 & 0.002101 & 0.002061 & 0.514623 & 1.57 \mathrm{E}-06 & 0.000278 & 0.000269 & 0.000323\end{array}$ $\begin{array}{llllllllllllllllll}3.365053 & 0.173769 & 0.459721 & 536.7568 & 0.00146 & 0.044767 & 0.043424 & 0.025781 & 6.66 \mathrm{E}-05 & 0.000176 & 0.205573 & 5.59 \mathrm{E}-07 & 1.71 \mathrm{E}-05 & 1.66 \mathrm{E}-05 & 9.87\end{array}$ $\begin{array}{llllllllllllllll}23.68 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000675 & 0.002081 & 4.960103 & 1.32 \mathrm{E}-05 & 0.000143 & 0.000139 & 0.000146\end{array}$ 3.3650530 .0730930 .225249536 .7836

 $\begin{array}{lllllllllllllllllll}6.566667 & 0.173769 & 0.459721 & 536.7568 & 0.00146 & 0.044767 & 0.043424 & 0.025781 & 0.00013 & 0.000344 & 0.401161 & 1.09 E-06 & 3.35 E-05 & 3.25 E-05 & 1.93 E-05\end{array}$ $\begin{array}{lllllllllllllll}6.566667 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.000187 & 0.000577 & 1.375479 & 3.67 \mathrm{E}-06 & 3.97 \mathrm{E}-05 & 3.85 \mathrm{E}-05 & 4.06 \mathrm{E}-05\end{array}$ | | 0.566677 | 0.073093 | 0.225249 | 536.7836 | 0.001433 | 0.015502 | 0.015037 | 0.015837 | 0.000187 | 0.000577 | 1.375479 | $3.67 \mathrm{E}-06$ | $3.97 \mathrm{E}-05$ | $3.85 \mathrm{E}-05$ | $4.06 \mathrm{E}-05$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllll}24532.8 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.699733 & 2.156356 & 5138.734 & 0.013716 & 0.148405 & 0.143953 & 0.151608 \\ 24532.8 & 0.30314 & 0.935436 & 536.6725 & 0.00151 & 0.073779 & 0.071565 & 0.054797 & 0.616885 & 1.903593 & 1092.118 & 0.003074 & 0.150138 & 0.145634 & 0.111511\end{array}$ $\begin{array}{llllllllllllllllllllllllll}24532.8 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.699733 & 2.156356 & 5138.734 & 0.013716 & 0.148405 & 0.143953 & 0.151608\end{array}$ $\begin{array}{lllllllllllllllllllll}24532.8 & 2.836111 & 2.782112 & 694.7262 & 0.002118 & 0.374745 & 0.363503 & 0.436618 & 1.610631 & 1.579966 & 394.536 & 0.001203 & 0.212818 & 0.206434 & 0.247956\end{array}$

 $\begin{array}{llllllllllllllllllllllllllll}320 & 0.783958 & 1.589339 & 595.9478 & 0.001679 & 0.116159 & 0.112674 & 0.072388 & 0.016316 & 0.033077 & 12.40271 & 3.49 E-05 & 0.002417 & 0.002345 & 0.001507\end{array}$ $\begin{array}{llllllllllllllllllllll}80 & 0.073093 & 0.225249 & 536.7836 & 0.001433 & 0.015502 & 0.015037 & 0.015837 & 0.002282 & 0.007032 & 16.75711 & 4.47 \mathrm{E}-05 & 0.000484 & 0.000469 & 0.000494\end{array}$ \begin{tabular}{llllllllllllllllll}
16 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.000456 \& 0.001406 \& 3.351421 \& $8.95 \mathrm{E}-06$ \& $9.68 \mathrm{E}-05$ \& $9.39 \mathrm{E}-05$ \& $9.89 \mathrm{E}-05$

\hline

10 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.000285 \& 0.000879 \& 2.094638 \& $5.59 \mathrm{E}-06$ \& $6.05 \mathrm{E}-05$ \& $5.87 \mathrm{E}-05$ \& $6.18 \mathrm{E}-05$

\hline

4 \& 0.073093 \& 0.225249 \& 536.7836 \& 0.001433 \& 0.015502 \& 0.015037 \& 0.015837 \& 0.000114 \& 0.000352 \& 0.837855 \& $2.24 \mathrm{E}-06$ \& $2.42 \mathrm{E}-05$ \& $2.35 \mathrm{E}-05$

$2.47 \mathrm{E}-05$

\hline
\end{tabular} $\begin{array}{llllllllllllllllllll}240 & 0.783958 & 1.589339 & 595.9478 & 0.001679 & 0.116159 & 0.112674 & 0.072388 & 0.012237 & 0.024808 & 9.302036 & 2.62 \mathrm{E}-05 & 0.001813 & 0.001759 & 0.00113\end{array}$

For calculating fugitive, re-entrained PM emissions from on-road and non-road material delivery and handling equipment, a nominal VMT of 5 miles is used for each vehicle per day.
In deriving emission factors from NONROAD, the horsepower for each equipment represents the most popular in each equipment category.
The total length of each modeled scenario is used to define the number of days associated with vehicle/equipment evaporative emissions.
The choice of location and season are assumed to adequately represent differences in fuel characteristics affecting emissions.
Only two seasons (Summer and Winter) are used to represent all seasons.
14 U.S. Counties are used to represent all other counties in the U.S. (all other counties are mapped to the 14).
The default methods assume that all construction equipment use diesel as well as heavy-duty on-road vehicles, while passenger vehicles (including motorcycles) use gasoline.
Fugitive emissions are only modeled for:
Asphalt drying
Asphalt storage and batching
Concrete mixing/batching
Soil handling
Unstabilized land and wind erosion
Material movement (unpaved roads)
Material movement (paved roads)
On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
Crack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)

(mile)	5			MOVES ONROAD Emissions (tpy)							
				10	13	11	12	14	5	8	
CO2	CH4	N2O	co	NOx	SO2	PM10	PM2.5	VOC	CO2	CH4	N2
1055.084	0.017295	0.003286	0.034164	0.051551	9.02E-05	0.001212	0.001115	0.003436	26.89522	0.000441	8.38E-05
1055.084	0.017295	0.003286	0.01822	0.027493	4.81E-05	0.000647	0.000595	0.001832	14.34373	0.000235	4.47E-05
332.4565	0.009671	0.001982	12.96491	0.423273	0.00912	0.009673	0.008557	0.340154	1372.865	0.039936	0.008183
1707.092	0.021732	0.002802	0.006069	0.011189	1.51E-05	0.000221	0.000203	0.000513	4.516215	5.75E-05	7.41E-06
1055.084	0.017295	0.003286	0	0	0	0	0	0	0	0	0
332.4565	0.009671	0.001982	0.051567	0.001684	3.63E-05	3.85E-05	3.4E-05	0.001353	5.46044	0.000159	05
1055.084	0.017295	0.003286	0	0	0	0	0	0	0	0	0
332.4565	0.009671	0.001982	0.471451	0.015392	0.000332	0.000352	0.000311	0.012369	49.92235	0.001452	0.000298
1707.092	0.021732	0.002802	0.000529	0.000974	1.32E-06	$1.92 \mathrm{E}-05$	$1.77 \mathrm{E}-05$	4.47	0.39328	5.01E-0	6.46E-07
1055.084	0.017295	0.003286	0.00492	0.007423	1.3E-05	0.000175	0.000161	0.000495	3.872912	6.35E-05	1.21E-05
1055.084	0.017295	0.003286	0.000437	0.00066	$1.15 \mathrm{E}-06$	$1.55 \mathrm{E}-05$	$1.43 \mathrm{E}-05$	4.4E-05	0.344259	5.64E-06	$1.07 \mathrm{E}-06$
1055.084	0.017295	0.003286	0.002624	0.003959	6.93E-06	9.31E-05	8.57E-05	0.000264	2.065553	3.39E-05	6.43E-06
332.4565	0.009671	0.001982	2.303683	0.07521	0.001621	0.001719	0.00152	0.060441	243.9388	0.007096	0.001454
1055.084	0.017295	0.003286	0.003417	0.005156	9.02E-06	0.000121	0.000112	0.000344	2.69010	4.41E-05	8.38E-06
1055.084	0.017295	0.003286	0.001822	0.002749	4.81E-06	6.46E-05	5.95E-05	0.000183	1.434024	$2.35 \mathrm{E}-05$	4.47E-06
332.4565	0.009671	0.001982	11.13804	0.36363	0.007835	0.00831	0.007351	0.292223	1179.416	0.034308	0.00703
1707.092	0.021732	0.002802	0.000405	0.000746	1.01E-06	1.47E-05	$1.35 \mathrm{E}-05$	3.42E-05	0.301081	$3.83 \mathrm{E}-06$	4.94E-07
		Totals	27.00225	0.991088	0.019134	0.022674	0.02015	0.71373	2908.458	0.083864	0.017166

Version 1.0
Run Date \& Time: 12/27/2021 1:56:32 PM
study

Study Name
Austin Airport

Study Description
Construction Schedule 2024

EMISSIONS INVENTORY - DETAILS:

Non-Road Sources
Units for Non-Greenhouse Gases Emission: Short Ton Units for Greenhouse Gases (CO2, CH4 , and N2O) Emission: Metric Ton

Scenario II Year

Project Constructi Equipment

 2024 Taxiways Asphalt PliAsphalt Paver2024 Taxiways Asphalt Pli:Dump Truck 2024 Taxiways Asphalt Pliother General Equipment 2024 Taxiways Asphalt Pli Pickup Truck 2024 Taxiways Asphalt PliRoller 2024 Taxiways Asphalt PliSkid Steer Loader 2024 Taxiways Asphalt Plisurfacing Equipment (Grooving) 2024 Taxiways Clearing aıChain Saw 2024 Taxiways Clearing aIChipper/Stump Grinder 2024 Taxiways Clearing aı Pickup Truck 2024 Taxiways Drainage - Dozer 2024 Taxiways Drainage - Dump Truck 2024 Taxiways Drainage - Excavato 2024 Taxiways Drainage-Loader 2024 Taxiways Drainage - Other General Equipment 2024 Taxiways Drainage - Pickup Truck 2024 Taxiways Drainage - Roller 2024 Taxiways Drainage - Dump Truck 2024 Taxiways Drainage-Loader 2024 Taxiways Drainage - Other General Equipment 2024 Taxiways Drainage - Pickup Truck 2024 Taxiways Drainage - Tractors/Loader/Backhoe 2024 Taxiways Dust ContrWater Truck 2024 Taxiways ExcavationDozer 2024 Taxiways ExcavationDump Truck (12 cy) 2024 Taxiways Excavation Pickup Truck 2024 Taxiways Excavation Roller 2024 Taxiways ExcavationDozer 2024 Taxiways ExcavationDump Truck (12 cy) 2024 Taxiways Excavation Excavator 2024 Taxiways Excavation Pickup Truck 2024 Taxiways Excavation Roller 2024 Taxiways ExcavationScraper 2024 Taxiways ExcavationDozer 2024 Taxiways Fencing Concrete Truck 2024 Taxiways Fencing Dump Truck 2024 Taxiways Fencing Other General Equipment 2024 Taxiways Fencing Pickup Truck $\begin{array}{lll}2024 \text { Taxiways Fencing } & \text { Pickup Truck } \\ 2024 \text { Taxiways Fencing } & \text { Skid Steer Loader }\end{array}$ $\begin{array}{lll}2024 \text { Taxiways } & \text { Fencing } & \text { Skid Steer Loader } \\ 2024 \text { Taxiways } & \text { Fencing } & \text { Tractors/Loader/Backhoe }\end{array}$ $\begin{array}{ll}2024 \text { Taxiways Fencing } & \text { Tractors/ } \\ 2024 \text { Taxiways } & \text { Grading } \\ \text { Dozer }\end{array}$ 2024 Taxiways Grading Grader 2024 Taxiways Grading Roller 2024 Taxiways Hydroseec Hydroseeder 2024 Taxiways Hydroseec Off-Road Truck 2024 Taxiways Lighting Dump Truck 2024 Taxiways Lighting Loader 2024 Taxiways Lighting Other General Equipment 2024 Taxiways Lighting Pickup Truck 2024 Taxiways Lighting Skid Steer Loader 2024 Taxiways Lighting Tractors/Loader/Backhoe 2024 Taxiways Markings Flatbed Truck 2024 Taxiways Markings Other General Equipment 2024 Taxiways Markings Pickup Truck 2024 Taxiways Soil Erosio Other General Equipment 2024 Taxiways Soil Erosio Pickup Truck 2024 Taxiways Soil Erosio Pumps 2024 Taxiways Soil Erosio Tractors/Loader/Backhoe 2024 Taxiways Subbase P|Dozer 2024 Taxiways Subbase P|Dump Truck (12 cy) 2024 Taxiways Subbase PlPickup Truck 2024 Taxiways Subbase Plioller 2024 Taxiways Subbase PIRolier 2024 Taxiways Topsoil PlaDump Truck 2024 Taxiways Topsoil Pla Pickup Truck 2024 Terminal \&Asphalt PlaAsphalt Paver 2024 Terminal fAsphalt Pli:Dump Truck 2024 Terminal f Asphalt Pliother General Equipment 2024 Terminal \&Asphalt Pli Pickup Truck 2024 Terminal \& Asphalt Pli: Roller 2024 Terminal fAsphalt Pl:Skid Steer Loader 2024 Terminal fAsphalt Plisurfacing Equipment (Grooving) 2024 Terminal AClearing alChain Saw 2024 Terminal fClearing alChipper/Stump Grinder 2024 Terminal f Clearing aı Pickup Truck 2024 Terminal \& Concrete FAir Compressor 2024 Terminal \& Concrete FConcrete Saws
2024 Terminal \& Concrete FConcrete Truck 2024 Terminal f Concrete FOther General Equipment 2024 Terminal f Concrete FPickup Truck 2024 Terminal $\not \subset$ Concrete F Rubber Tired Loader 2024 Terminal f Concrete FSlip Form Paver

 $\begin{array}{llllllllllllll}0.59 & 49.47214 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00101 & 0.003528 & 10.36277 & 2.75 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}0.43 & 27.4725 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000588 & 0.00185 & 1.223041 & 3.4 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.59 & 13.73625 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00028 & 0.000979 & 2.877288 \\ 7.64 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 13.73625 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000373 & 0.001061 & 0.532495 & 1.45 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.21 & 13.73625 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.000783 & 0.000978 & 0.165537 & 5.21 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 17.5824 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.000428 & 0.001076 & 0.170138 & 6.26 \mathrm{E}-07\end{array}$ $\begin{array}{rrrrrrrrrrrr}0.59 & 17.5824 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16336 & 0.352256 & 0.000428 & 0.001076 & 0.170138 \\ 0.7 & 36 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.240901 & 0.233674 & 0.83744 & 0.000756 & 0.001278 & 0.181429\end{array} \quad 6.67 \mathrm{E}-07$ $\begin{array}{lllllllllllll}36 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.001118 & 0.002509 & 1.016978 & 2.83 \mathrm{E}-06\end{array}$
 4820.1273180 .35758653677560 .0014430 .0322110 .0312450 .0191370000153500043116 .470939 $\begin{array}{llllllllllll}105.92 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.001535 & 0.004311 & 6.470939 & 1.74 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}105.92 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002162 & 0.007553 & 22.18672 & 5.89 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}105.92 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.00102 & 0.003382 & 6.471154 & 1.72 E-05\end{array}$ $\begin{array}{llllllllllllll}105.92 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.013152 & 0.023468 & 7.542934 & 2.28 E-05\end{array}$ $\begin{array}{llllllllllll}105.92 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.002268 & 0.007132 & 4.715425 & 1.31 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}105.92 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002162 & 0.007553 & 22.18672 & 5.89 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}105.92 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.002875 & 0.008181 & 4.106062 & 1.12 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 58.84444 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001201 & 0.004196 & 12.32596 & 3.27 E-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 58.84444 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.007306 & 0.013038 & 4.190519 & 1.27 E-05\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 58.84444 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.00126 & 0.003962 & 2.619681 & 7.29 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 58.84444 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001201 & 0.004196 & 12.32596 & 3.27 E-05\end{array}$ $\begin{array}{llllllllllllllll}0.21 & 58.84444 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.003618 & 0.003605 & 0.946474 & 2.86 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 2880 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.058785 & 0.205359 & 603.2644 & 0.001602\end{array}$ $\begin{array}{lllllllllllll}0.59 & 61.05067 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000885 & 0.002485 & 3.72975 & 1 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}0.59 & 61.05067 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001246 & 0.004353 & 12.78809 & 3.4 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 61.05067 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001246 & 0.004353 & 12.78809 & 3.4 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 28.17723 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000765 & 0.002176 & 1.09231 & 2.98 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.59 & 45.788 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000663 & 0.001863 & 2.797313 & 7.52 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 122.1013 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002492 & 0.008706 & 25.57618 & 6.79 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 36.6304 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.000353 & 0.00117 & 2.237924 & 5.95 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 36.6304 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000748 & 0.002612 & 7.672853 & 2.04 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 36.6304 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000994 & 0.002829 & 1.420003 & 3.87 E-06\end{array}$ $\begin{array}{lrllllllllllllllllll}0.59 & 36.6304 & 0.4123 & 1.1875102 & 536.729 & 0.001489 & 0.040091 & 0.038888 & 0.034682 & 0.004142 & 0.010508 & 9.589954 & 2.66 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 17.23765 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.00025 & 0.000702 & 1.053095 & 2.83 E-06\end{array}$
 $\begin{array}{llllllllllll}0.59 & 36.66667 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000748 & 0.002615 & 7.680449\end{array} 2.04 \mathrm{E}-05$ $\begin{array}{llllllllllll} & 16.59 & 146.6667 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002994 & 0.010458 \\ 0.43 & 146.6667 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.00314 & 0.009875 & 6.529415\end{array} 1.82 \mathrm{E}-05$ $\begin{array}{lllllllllllll}0.43 & 146.6667 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.00314 & 0.009875 & 6.529415 & 1.82 \mathrm{E}-05 \\ 0.59 & 146.6667 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002994 & 0.010458 & 30.7218 & 8.16 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 146.6667 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002994 & 0.010458 & 30.7218 & 8.16 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.21 & 146.6667 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.008356 & 0.010445 & 1.7675 & 5.56 \mathrm{E}-06\end{array}$ $\begin{array}{rrrrrrrrrrr}0.21 & 146.6667 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.009018 & 0.008984 \\ 0.59 & 14.359035 & 7.13 \mathrm{E}-06 \\ 0.5964 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000213 & 0.000598 & 0.897843 \\ 2.41 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.59 & 14.6964 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000213 & 0.000598 & 0.897843 & 2.41 \mathrm{E}-06 \\ 0.59 & 14.6964 & 0.070474 & 0.225529 & 536.7797 & 0.001435 & 0.016427 & 0.015934 & 0.017337 & 0.000202 & 0.000647 & 1.539171 & 4.11 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 14.6964 & 0.070474 & 0.225529 & 536.7797 & 0.001435 & 0.016427 & 0.015934 & 0.017337 & 0.000202 & 0.000647 & 1.539171 & 4.11 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 14.6964 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000399 & 0.001135 & 0.569716 & 1.55 E-06\end{array}$ $\begin{array}{lllllllllllll}0.59 & 13.24 & 0.674104 & 1.451475 & 536.5624 & 0.00162 & 0.106831 & 0.103626 & 0.092216 & 0.003483 & 0.007499 & 2.772158 & 8.37 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 13.24 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00027 & 0.000944 & 2.77334 & 7.36 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 44.4 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000906 & 0.003166 & 9.300326 & 2.47 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllll}0.59 & 44.4 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.005513 & 0.009838 & 3.16188 \\ 9.55 E-06\end{array}$ $\begin{array}{llllllllllllll}0.43 & 44.4 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000951 & 0.002989 & 1.976632 & 5.5 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}44.4 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000906 & 0.003166 & 9.300326 & 2.47 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}44.4 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.00253 & 0.003162 & 0.53507 & 1.68 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}44.4 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.00273 & 0.00272 & 0.714144 & 2.16 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.59 & 226.2857 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.004619 & 0.016135 & 47.39934 & 0.000126\end{array}$ $\begin{array}{llllllllllllllllllll}0.43 & 226.2857 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.004844 & 0.015236 & 10.07396 & 2.8 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 226.2857 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.004619 & 0.016135 & 47.39934 & 0.000126\end{array}$ $\begin{array}{lllllllllllllllll}0.43 & 12 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000257 & 0.000808 & 0.534225 & 1.49 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 24 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00049 & 0.001711 & 5.027203 & 1.33 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}12 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.240901 & 0.233674 & 0.83744 & 0.000155 & 0.000262 & 0.03715 & 1.37 \mathrm{E}-07\end{array}$ $122.656022 \quad 2.6461969482780 .00210 .3509320 .3404040 .402188$ $\begin{array}{lllllllllllllllllll}0.21 & 12 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.000738 & 0.000735 & 0.193012 & 5.83 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}0.59 & 23.13474 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000335 & 0.000942 & 1.413364 & 3.8 \mathrm{E}-06 \\ 0.59 & 162.8 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003323 & 0.011608 & 34.10119 & 9.05 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 162.8 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003323 & 0.011608 & 34.10119 & 9.05 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 23.13474 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000472 & 0.00165 & 4.845959 & 1.29 \mathrm{E}-05 \\ 0.59 & 22.54154 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000612 & 0.001741 & 0.873838 & 2.38 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 22.54154 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000612 & 0.001741 & 0.873838 & 2.38 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.59 & 32.65867 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000473 & 0.001329 & 1.995206 & 5.36 \mathrm{E}-06\end{array}$
 $\begin{array}{lllllllllllll}0.59 & 32.65867 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000667 & 0.002329 & 6.840906 & 1.82 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 39.738 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.000801 & 0.002023 & 2.427598 & 6.61 \mathrm{E}-06 \\ 0.59 & 143.1194 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002921 & 0.010205 & 29.97877 & 7.96 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 143.1194 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002921 & 0.010205 & 29.97877 & 7.96 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}0.43 & 79.476 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001701 & 0.005351 & 3.538171 & 9.84 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.59 & 39.738 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000811 & 0.002834 & 8.323792 \\ 2.21 E-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 39.738 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.001079 & 0.003069 & 1.540471 & 4.2 \mathrm{E}-06\end{array}$ $\begin{array}{lrrrrrrrrrr}0.21 & 39.738 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.002264 & 0.00283 \\ 0.478888 & 1.51 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.59 & 50.86464 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.001237 & 0.003113 & 0.492198 \\ 1.81 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.7 & 81.6 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.240901 & 0.233674 & 0.83744 & 0.001713 & 0.002898 & 0.41124 & 1.51 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.43 & 81.6 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.002533 & 0.005686 & 2.30515 & 6.42 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 108.8 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002221 & 0.007758 & 22.78999 & 6.05 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.43 & 105.968 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.00329 & 0.007384 & 2.993531 & 8.34 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 105.968 & 0.319365 & 2.565449 & 595.8652 & 0.001583 & 0.029353 & 0.028472 & 0.098284 & 0.00088 & 0.007072 & 1.642636 & 4.36 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 441.5333 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.009012 & 0.031484 & 92.48657 & 0.000246\end{array}$ $\begin{array}{llllllllllllllllll}0.43 & 211.936 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.004537 & 0.014269 & 9.435124 & 2.62 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 317.904 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.006489 & 0.022668 & 66.59033 & 0.000177\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 105.968 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.013158 & 0.023479 & 7.546353 & 2.28 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 105.968 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.002137 & 0.005396 & 6.473595 & 1.76 \mathrm{E}-05\end{array}$

2024 Terminal AConcrete FSurfacing Equipment (Grooving) 2024 Terminal A Drainage - Dozer	
2024 Terminal A Drainage	- Dump Truck
2024 Terminal A Drainage - Excavator	
2024 Terminal A Drainage - Loader	
2024 Terminal A Drainage - Other General Equipment	
2024 Terminal A Drainage	- Pickup Truck
2024 Terminal A Drainage - Roller	
2024 Terminal A Drainage - Dump Truck	
2024 Terminal A Drainage	- Loader
2024 Terminal A Drainage - Other General Equipment	
2024 Terminal / Drainage	- Pickup Truck
2024 Terminal A Drainage - Tractors/Loader/Backhoe	
2024 Terminal A Dust Cont	tr Water Truck
2024 Terminal AExcavation Dozer	
2024 Terminal AExcavation Dump Truck (12 cy)	
2024 Terminal AExcavation Pickup Truck	
2024 Terminal P Excavation	on Roller
2024 Terminal \uparrow Excavation Dozer	
2024 Terminal PExcavation Dump Truck (12 cy)	
2024 Terminal A Excavation Ex	
2024 Terminal A Excavation Pickup Truck	
2024 Terminal \uparrow Excavation	on Roller
2024 Terminal AExcavations	
2024 Terminal A Excavation Dozer	
2024 Terminal A Fencing	Concrete Truck
2024 Terminal \uparrow Fencing	Dump Truck
2024 Terminal $¢$ Fencing	Other General Equipme
2024 Terminal $/$ Fencing	Pickup Truck
2024 Terminal \uparrow Fencing	Skid Steer Loader
2024 Terminal \uparrow Fencing	Tractors/Loader/Backhoe
2024 Terminal AGrading	
2024 Terminal AGrading	Grader
2024 Terminal AGrading	Roller
2024 Terminal AHydroseect	ec Hydrosee
2024 Terminal A Hydroseec Off-Road Truck	
2024 Terminal Alighting Dump Truck	
2024 Terminal L Lighting	
2024 Terminal $\operatorname{Lighting}$	Other General Equipme
2024 Terminal LLighting	Pickup Truck
	Skid Steer Loader
2024 Terminal A Lighting	Tractors/Loader/Backhoe
2024 Terminal A Markings Flatbed Truck	
2024 Terminal A Markings Other Gen 2024 Terminal A Markings Pickup Tru	
2024 Terminal ASealing/Fu Distributing Tanker	
2024 Terminal A Sealing/Fu	FuOther General Equip
2024 Terminal A Sealing/Fu Pickup Truck	
2024 Terminal A Soil Erosio	io Other General
2024 Terminal A Soil Erosio	io Pickup Truck
2024 Terminal ASoil Erosio Pumps	
2024 Terminal ASoil Erosio Tractors/Loader/Bac	
2024 Terminal ASubbase P Roller 2024 Terminal ATopsoil Pla Dozer	
2024 Terminal ATopsoil Pli Dump Truck2024 Terminal A Topsoil P P Pickup Truck	
2024 Terminal A Asphal Pli Pump Truck2024 Terminal A Asphalt Pli Other General	
2024 Terminal A Asphalt Pl	Pli Pickup Tr
2024 Terminal A Asphalt Pl: Roller	
2024 Terminal A Asphalt Pliskid Steer L2024 Terminal Asphalt Pl: Surfacing E,	
2024 Terminal AClearing aıChain Saw	
2024 Terminal AClearing alChipper/Stump 2024 Terminal AClearing aI Pickup Truck	
2024 Terminal AConcrete FAir Compressor	
2024 Terminal AConcrete FConcrete Saws	
2024 Terminal A Concrete FConcrete Truck	
2024 Terminal AConcrete FOther General Equipment	
2024 Terminal AConcrete	f Pickup Truck
2024 Terminal A Concrete fRubber Tired Loader	
2024 Terminal A Concrete F Slip Form Paver	
2024 Terminal A Concrete FSurfacing Equipment (Grooving)	
2024 Terminal A Drainage - Dump Truck	
2024 Terminal A Drainage - Excavator	
2024 Terminal A Drainage - Loader	
2024 Terminal A Drainage - Other General Equipment	
2024 Terminal ADrainage - Roller	
2024 Terminal A Drainage - Dump Truck	
2024 Terminal A Drainage - Loader	
2024 Terminal A Drainage - Other General Equipment	
2024 Terminal A Drainage	- Pickup Truck
024 Terminal A Drainage - Tractors/Loader/Backhoe	
2024 Terminal AExcavation Dump Truck (12 cy)	
2024 Terminal $\stackrel{A}{\text { Excavation Pickup Truck }}$	
024 Terminal AExcavation Roller	
2024 Terminal A Excavation Dump Truck (12 cy)	
2024 Terminal AExcavation Excavator	
2024 Terminal AExcavation Pickup Truck	
24 Terminal \uparrow Excavation Scraper	
024 Terminal A Excavation Dozer	
2024 Terminal P Fencing	Concrete Truck
2024 Terminal $/$ Fencing	Dump Truck
2024 Terminal \uparrow Fencing	Other General Equipment
2024 Terminal \uparrow Fencing	Pickup Truck
2024 Terminal F Fencing	Skid Steer Loader
2024 Terminal $/$ Fencing	Tractors/Loader/Backhoe
2024 Terminal AGrading 2024 Terminal ρ Grading	

Other Construction Ec Diesel Crawler Tractor/Doze Diesel Off-highway Trucks60 Diese Excavators175 Diese
Tractors/Loaders/Bac Other Construction Ec Diesel Off-highway Trucks60 Diesel Rollers100 Diesel Off-highway Trucks60 Diesel Tractors/Loaders/Bac Diese Tractors/Loaders/Bac Diese
Other Construction Ec Diese Off-highway Trucks60 Diese Tractors/Loaders/Bac Diese Off-highway Trucks60Dies Crawler Tractor/Doze Dies Off-highway Trucks60 Diese Off-highway Trucks60 Dies Rollers100 Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diesel
Excavators175 \quad Diesel Off-highway Trucks60 Diese $\begin{array}{ll}\text { Rollers100 } & \text { Diesel } \\ \text { Scrapers600 } & \text { Diesel }\end{array}$
Crawler Tractor/Doze Diese Off-highway Trucks60 Diese Off-highway Trucks60Diese Construction EC Diesel Off-highway Trucks60 Diese Tractors/Loaders/Bac Diese Crawler Tractor/Doze Diese Graders300 Diesel Rollers100 Diese off-highway Trucks60Diese Off-highway Trucks60Dies ractors/Loaders/Bac Diese Other Construction Ec Diese Off-highway Trucks60 Dies Skid Steer Loaders75 Dies Tractors/Loaders/Bac Diese Off-highway Trucks60Dies off his Off-highway Trucks60 Diese Off-highway Trucks60 Diese Other Construction Ec Diese Off-highway Trucks60 Dies Other Construction Ec Diese Off-highway Trucks60 Dies Other Construction Ec Diese Tractors/Loaders/Bac Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diese Iff-highway Trucks60 Dies Rollers100 Diese Off-highway Trucks60 Diese off-highway Trucks60Diese Pavers175 Aff-highway Trucks60 Diese off-highway Trucks 6 Dies Rollers100 Dies skid Steer Loaders75 Diese Other Construction Ec Diese ther Construction Ec Dies Other Construction Ec Diese Off-highway Trucks60 Diese Other Construction Ec Diese Other Construction Ec Diese Off-highway Trucks60 Diese Other Construction Ec Diese ff-highway Trucks60 Dies ractors/Loaders/Bac Dies Pavers175 Diese Crawler Tractor/Doze Dies Off-highway Trucks60 Diese Excavators175
Tractors/Loaders/Bac Diese Other Construction Ec Diese Off-highway Trucks60 Diese Rollers100 Diese Off-highway Trucks60Diese Tractors/Loaders/Bac Diese Off-highway Trucks60Dies Tractors/Loaders/Bac Dies fractors/Loaders/Bac Dies Crawler Tractor/Doze Dies Craw-highay Trucks60Dies Off-highway Trucks60Dies Off-highway Trucks60Dies
Rollers100 Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Dies Off-highway Trucks60 Diese Rollers100 Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diese Off-highway Trucks60 Dies Other Construction Ec Diese Off-highway Trucks60 Diese Skid Steer Loaders75 Diese Tractors/Loaders/Bac Diese Graders300 Diese$\begin{array}{llllllllllllllllllll}59 & 176.6133 & 0.127318 & 0.357586 & 5367775 & 0.001443 & 0.032211 & 0.031245 & 0.0193137 & 0.002559 & 0.007359 & 603.2644 & 0.001602\end{array}$$\begin{array}{llllllllllllllllllll} & 59 & 18.5133 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003605 & 0.012593 & 36.99463 & 9.82 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllllll} & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.001919 & 0.005391 & 8.09234 & 2.17 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllllllllll}0.59 & 353.2267 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00721 & 0.025187 & 73.98926 & 0.00019\end{array}$
$\begin{array}{lllllllllllllllllll}0.59 & 105.968 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.001021 & 0.003383 & 6.474086 & 1.72 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllll}0.59 & 105.968 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002163 & 0.007556 & 22.19678 & 5.89 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllllllll}0.59 & 105.968 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.002876 & 0.008184 & 4.107923 & 1.12 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllllllll}0.59 & 132.46 & 0.231824 & 0.588102 & 536.729 & 0.001489 & 0.040091 & 0.038888 & 0.034682 & 0.011983 & 0.030398 & 27.74275 & 7.7 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllllllll}0.59 & 49.86729 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000723 & 0.00203 & 3.046528 & 8.19 E-06\end{array}$
$\begin{array}{lllllllllllllllllllll}0.59 & 7.955556 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000162 & 0.000567 & 1.666425 & 4.42 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllllll}0.59 & 31.82222 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00065 & 0.002269 & 6.665699 & 1.77 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllllll}0.43 & 31.82222 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000681 & 0.002143 & 1.416685 & 3.94 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllllllll}0.59 & 31.82222 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00065 & 0.002269 & 6.665699 & 1.77 \mathrm{E}-0.5\end{array}$

$\begin{array}{lllllllllllllllllllll}0.21 & 31.82222 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.001957 & 0.001949 & 0.511839 & 1.55 \mathrm{E}-06\end{array}$

$\begin{array}{lllllllllllllllll}0.59 & 33.0403 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000479 & 0.001345 & 2.018521 & 5.43 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllll}0.59 & 33.0403 & 0.070474 & 0.225529 & 536.7797 & 0.001435 & 0.016427 & 0.015934 & 0.017337 & 0.000454 & 0.001454 & 3.460349 & 9.25 \mathrm{E}-06 \\ 0.59 & 33.0403 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000897 & 0.002552 & 1.28083 & 3.49 \mathrm{E}-06\end{array}$
$\begin{array}{lrrrrrrrrrrr}0.59 & 33.0403 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000897 & 0.002552 & 1.28083 \\ 0.59 & 29.766 & 0.674104 & 1.451475 & 536.5624 & 0.00162 & 0.106831 & 0.103626 & 0.092216 & 0.00783 & 0.016859 & 6.232331\end{array}$
$\begin{array}{lllllllllllll}0.59 & 29.766 & 0.674104 & 1.451475 & 536.5624 & 0.00162 & 0.106831 & 0.103626 & 0.092216 & 0.00783 & 0.016859 & 6.232331 & 1.88 \mathrm{E}-0.5\end{array}$
$\begin{array}{llllllllllllll}0.59 & 29.766 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000608 & 0.002122 & 6.234989 & 1.66 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllll}0.59 & 14.88 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000304 & 0.001061 & 3.116866 & 8.28 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllll}0.59 & 14.88 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.001848 & 0.003297 & 1.059657 & 3.2 \mathrm{E}-06 \\ 0.43 & 14.88 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000319 & 0.001002 & 0.662439 & 1.84 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllll}0.43 & 14.88 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000319 & 0.001002 & 0.662439 & 1.84 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllll}0.59 & 14.88 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000304 & 0.001061 & 3.116866 & 8.28 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllll}0.21 & 14.88 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.000848 & 0.00106 & 0.179321 & 5.64 \mathrm{E}-07\end{array}$

0.21	14.88	2.656022	2.64619	694.8278	0.0021	0.350932	0.340404	0.402188	0.000915	0.000911	0.239335

$\begin{array}{lllllllllllllll}0.59 & 654.6286 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.013362 & 0.046678 & 137.1229 & 0.000364\end{array}$
$\begin{array}{lllllllllllllll}0.43 & 654.6286 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.014014 & 0.044076 & 29.14324 & 8.11 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllll}0.59 & 654.6286 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.013362 & 0.046678 & 137.1229 \\ 0\end{array} 0.000364$

| .59 | 84.7744 | 0.052307 | 0.182731 | 536.7912 | 0.001425 | 0.011908 | 0.01155 | 0.013356 | 0.00173 | 0.006045 | 17.75742 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $4.71 \mathrm{E}-05$

$\begin{array}{lllllllllllll}.43 & 84.7744 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001815 & 0.005708 & 3.77405 & 1.05 \mathrm{E}-05\end{array}$

$\left.\begin{array}{llllllllllll}0.43 & 27.2 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000582 & 0.001831 & 1.21091\end{array}\right) 3.37 \mathrm{E}-06$
$\begin{array}{lllllllllllllllllll}0.59 & 54.4 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00111 & 0.003879 & 11.39499 & 3.03 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll}0.43 & 27.2 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.240901 & 0.233674 & 0.83744 & 0.000351 & 0.000593 & 0.084206 & 3.1 \mathrm{E}-07\end{array}$
$\begin{array}{llllllllllllll}27.2 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.001672 & 0.001666 & 0.437494 & 1.32 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllll}.59 & 66.92716 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.00097 & 0.002724 & 4.088761 & 1.1 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllllllllllll}0.59 & 470.9689 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.009613 & 0.033583 & 98.65234 & 0.000262\end{array}$
$\begin{array}{llllllllllllllllllll}0.59 & 66.92716 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001366 & 0.004772 & 14.01902 & 3.72 \mathrm{E}-0.5\end{array}$
$\begin{array}{llllllllllllllllllll}0.59 & 65.21108 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.00177 & 0.005036 & 2.527953 & 6.89 \mathrm{E}-0\end{array}$
0.0010640 .0029884 .485589
$\begin{array}{lllllllllllllll}59 & 73.42267 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001499 & 0.005235 & 15.37961\end{array}$
$\begin{array}{lllllllllllllllllllllll}0.59 & 73.42267 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001499 & 0.005235 & 15.37961 & 4.08 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll}0.59 & 73.42267 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001499 & 0.005235 & 15.37961 & 4.08 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllll}0.59 & 43.068 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.000868 & 0.002193 & 2.631028 & 7.16 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllll}0.59 & 155.1127 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003166 & 0.01106 & 32.49095 & 8.63 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllllllllllll}0.43 & 86.136 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001844 & 0.005799 & 3.834666 & 1.07 E-05\end{array}$
$\begin{array}{llllllllllllllllllll}0.43 & 86.136 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001844 & 0.005799 & 3.834666 & 1.07 E-05\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 43.068 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000879 & 0.003071 & 9.021316 & 2.4 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllll}.59 & 43.068 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.001169 & 0.003326 & 1.669561 & 4.55 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllllll} & 41 & 43.068 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.002454 & 0.003067 & 0.519018 & 1.63 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllll}0.59 & 55.12704 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.001341 & 0.003374 & 0.533444 & 1.96 \mathrm{E}-06\end{array}$

$\begin{array}{lllllllllllll}88.8 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.002757 & 0.006188 & 2.508545 & 6.99 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllllllllll}0.59 & 118.4 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002417 & 0.008443 & 24.80087 & 6.59 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllll}.43 & 114.848 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.003565 & 0.008003 & 3.244385 & 9.03 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllll}0.59 & 114.848 & 0.319365 & 2.565449 & 595.8652 & 0.001583 & 0.029353 & 0.028472 & 0.098284 & 0.000954 & 0.007665 & 1.780287 & 4.73 \mathrm{E}-06\end{array}$

| .59 | 478.5333 | 0.052307 | 0.182731 | 536.7912 | 0.001425 | 0.011908 | 0.01155 | 0.013356 | 0.009767 | 0.034122 | 100.2368 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.000266

$\begin{array}{lllllllllllll}.43 & 229.696 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.004917 & 0.015465 & 10.22578 & 2.84 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllllllll}0.59 & 344.544 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.007033 & 0.024568 & 72.17053 & 0.000192\end{array}$
$\begin{array}{llllllllllllllll}0.59 & 114.848 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.01426 & 0.025447 & 8.178729 & 2.47 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllll}.59 & 114.848 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.002316 & 0.005848 & 7.016075\end{array} 1.91 \mathrm{E}-05$
$\begin{array}{lllllllllllllllll}114.848 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.002793 & 0.007029 & 1.111342 & 4.09 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllllll}13.12 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.00019 & 0.000534 & 0.801536 & 2.15 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllll}13.12 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000268 & 0.000936 & 2.748204 & 7.3 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllll}13.12 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.000126 & 0.000419 & 0.801563 & 2.13 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllll}13.12 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.001629 & 0.002907 & 0.934321 & 2.82 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllll}13.12 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000281 & 0.000883 & 0.584086 & 1.62 E-06\end{array}$
$\begin{array}{llllllllllllllll}13.12 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000268 & 0.000936 & 2.748204 & 7.3 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllll}13.12 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000356 & 0.001013 & 0.508606 & 1.39 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllll}.59 & 13.12 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000356 & 0.001013 & 0.508606 & 1.39 \mathrm{E}-06\end{array}$
$0.597 .2888890 .0523070 .182731536 .79120 .0014250 .01190810 .011550 .0133560 .000149 \begin{array}{lllllll} & 0.00052 & 1.52678 & 4.05 \mathrm{E}-06\end{array}$
$\left.\begin{array}{rrrrrrrrrrr}0.59 & 7.288889 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.000905 & 0.001615\end{array} 0.519067\right) 1.57 \mathrm{E}-06$
$\begin{array}{llllllllllll}0.59 & 7.288889 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.000905 & 0.001615 & 0.519067 \\ 1.57 E-06\end{array}$
$\begin{array}{llllllllllllll}0.43 & 7.288889 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000156 & 0.000491 & 0.324492 & 9.03 \mathrm{E}-07\end{array}$
$\begin{array}{llllllllllllll}0.59 & 7.288889 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000149 & 0.00052 & 1.52678 & 4.05 \mathrm{E}-06\end{array}$

0.21	7.288889	2.656022	2.64619	694.8278	0.0021	0.350932	0.340404	0.402188	0.000448	0.000446	0.117237

$\begin{array}{llllllllllllll}0.59 & 2880 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.058785 & 0.205359 & 603.2644 & 0.001602\end{array}$
$\begin{array}{lllllllllllll}0.59 & 191.4133 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.002774 & 0.00779 & 11.69396 & 3.14 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll}0.59 & 191.4133 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.002774 & 0.00779 & 11.69396 & 3.14 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllll}0.59 & 191.4133 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003907 & 0.013649 & 40.09474 & 0.000106\end{array}$
$\begin{array}{llllllllllllll}0.59 & 191.4133 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003907 & 0.013649 & 40.09474 & 0.000106\end{array}$
$\begin{array}{lllllllllllll}0.59 & 191.4133 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003907 & 0.013649 & 40.09474 & 0.000106 \\ 0.59 & 88.34462 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.002398 & 0.006823 & 3.42474 & 9.33 \mathrm{E}-06\end{array}$
$\left.\begin{array}{lrrrrrrrrrrr}0.59 & 143.56 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.00208 & 0.005843 & 8.770469\end{array}\right) 2.36 \mathrm{E}-05$
$\begin{array}{llllllllllllll}0.59 & 382.8267 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.007814 & 0.027298 & 80.18948 & 0.000213\end{array}$

$\begin{array}{llllllllllllllll}0.59 & 114.848 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.001106 & 0.003667 & 7.016607 & 1.86 \mathrm{E}-05\end{array}$

0.59	114.848	0.052307	0.182731	536.7912	0.001425	0.011908	0.01155	0.013356	0.002344	0.008189	24.05684	$6.39 \mathrm{E}-05$

0.59	114.848	0.417356	1.187531	596.0587	0.001624	0.064693	0.062752	0.034547	0.003117	0.00887
.545248262	$1.21 \mathrm{E}-05$									

$\begin{array}{llllllllllllllllll}0.59 & 143.56 & 0.231824 & 0.588102 & 536.729 & 0.001489 & 0.040091 & 0.038888 & 0.034682 & 0.012987 & 0.032945 & 30.06757 & 8.34 \mathrm{E}-05\end{array}$
$\begin{array}{lrlllllllllll}0.59 & 143.56 & 0.231824 & 0.588102 & 536.729 & 0.001489 & 0.040091 & 0.038888 & 0.034682 & 0.012987 & 0.032945 & 30.06757 & 8.34 \mathrm{E}-05 \\ 0.59 & 54.04612 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000783 & 0.0022 & 3.301824 & 8.87 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllll} & 0.59 & 54.04612 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000783 & 0.0022 & 3.301824 & 8.87 \mathrm{E}-06 \\ 0.59 & 4.444444 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 9.07 \mathrm{E}-05 & 0.000317 & 0.930964 & 2.47 \mathrm{E}-06\end{array}$

| | 0.59 | 4.444444 | 0.052307 | 0.182731 | 536.7912 | 0.001425 | 0.011908 | 0.01155 | 0.013356 | $9.0 \mathrm{E}-05$ | 0.000317 | 0.930964 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $17.477 \mathrm{E}-06$

.43	17.77778	0.258085	0.811691	536.6978	0.001493	0.062621	0.060743	0.046238	0.000381	0.001197	0.791444	$2.2 \mathrm{E}-06$

0.43	17.77777	0.258085	0.811691	536.6978	0.001493	0.062621	0.060743	0.046238	0.000381	0.001197	0.791444
.59	17.77778	0.052307	0.182731	536.7912	0.001425	0.011908	0.01155	0.013356	0.000363	0.001268	3.723854

$\begin{array}{llllllllllll}0.59 & 17.77778 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000363 & 0.001268 & 3.723854 \\ 9.89 \mathrm{E}-06 \\ 0.21 & 17.77778 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.001013 & 0.001266 & 0.214242\end{array} \quad 6.74 \mathrm{E}-07$
$\begin{array}{llllllllllllll}0.21 & 17.77778 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.001013 & 0.001266 & 0.214242 & 6.74 \mathrm{E}-07 \\ 0.21 & 17.77778 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.001093 & 0.001089 & 0.285944 & 8.64 \mathrm{E}-07\end{array}$
$\begin{array}{lllllllllllllll} & 0.6478 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.001093 & 0.001089 & 0.285944 & 8.64 \mathrm{E}-0 \\ 0.59 & 35.7709 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000518 & 0.001456 & 2.185341 & 5.87 \mathrm{E}-06\end{array}$

2024 Terminal AHydroseec Hydroseeder	
2024 Terminal A Hydroseec Off-Road Truck	
2024 Terminal ALighting	Dump Truck
2024 Terminal ALighting	Loader
2024 Terminal ALighting	Other General Equipment
2024 Terminal $\operatorname{Lighting~}$	Pickup Truck
2024 Terminal ALighting	Skid Steer Loader
24 Terminal AL Lighting	Tractors/Loader/Backhoe
2024 Terminal \uparrow Markings	Flatbed Truck
2024 Terminal A Markings	Other General Equipme
2024 Terminal A Markings Pickup Truck	
2024 Terminal ASealing/Fu	Distributing Tanker
2024 Terminal ASealing/fuOther General Equipment	
2024 Terminal ASealing/Fu Pickup Truck	
2024 Terminal ASoil Erosio	Other General Equipment
2024 Terminal ASoil Erosio Pickup Truck	
2024 Terminal ASoil Erosio Pumps	
2024 Terminal ASoil Erosio	Tractors/Loader/Backhoe
2024 Terminal ASubbase P Dozer	
2024 Terminal A Subbase P Dump Truck (12 cy)	
2024 Terminal ASubbase P Pickup Truck	
2024 Terminal A Subbase P	Roller
2024 Terminal A Topsoil Ple Dozer	
2024 Terminal ATopsoil Ple Dump Truck	
2024 Terminal ATopsoil Ple Pickup Truck	
2024 Taxiway E, Asphalt Pl	Asphalt Paver
2024 Taxiway E, Asphalt Pli Dump Truck	
2024 Taxiway E Asphalt Pli Other General Eq	
2024 Taxiway E, Asphalt Pl	: Pickup Truck
2024 Taxiway E) Asphalt Pli Roller	
2024 Taxiway E, Asphalt Pli Skid Steer Loader	
2024 Taxiway E)Asphalt Pli Surfacing Equipment (Grooving)	
2024 Taxiway E) Clearing al Chain Saw	
2024 Taxiway E, Clearing al Chipper/Stump Grinder	
2024 Taxiway E EClearing a	Pickup Truck
2024 Taxiway E) Concrete FAir Compresso	
2024 Taxiway E, Concrete F Concrete Saws	
2024 Taxiway E) Concrete FConcrete Truck	
2024 Taxiway E) Concrete FOther General Eq 2024 Taxiway E) Concrete FPickup Truck	
2024 Taxiway E) Concrete f Rubber Tired Loader	
2024 Taxiway E) Concrete FSlip Form Paver	
2024 Taxiway E) Concrete FSurfacing Equipment (Gr 2024 Taxiway E) Drainage - Dozer	
2024 Taxiway E) Drainage - Dump Truck	
2024 Taxiway E. Drainage - Excavator	
2024 Taxiway E D Drainage - Loader	
2024 Taxiway E, Drainage - Other General Equipment	
2024 Taxiway E E Drainage	- Pickup Truck
2024 Taxiway E. Drainage - Roller	
2024 Taxiway E, Drainage - Dump Truck	
2024 Taxiway E. Drainage - Loader	
2024 Taxiway E, Drainage - Other General Equipment	
2024 Taxiway E) Drainage	- Pickup Truck
2024 Taxiway E) Drainage - Tractors/Loader/Backh	
2024 Taxiway E, Dust Cont Water Truck	
2024 Taxiway E) Excavation Dozer	
2024 Taxiway E) Excavation Dump Truck (12 cy)	
2024 Taxiway E) Excavation Pickup Truck	
	Roller
2024 Taxiway E) Excavation Dozer	
2024 Taxiway E, Excavation Dump Truck (12 cy	
2024 Taxiway E) Excavation Excavator	
2024 Taxiway E, Excavation Pickup Truck	
2024 Taxiway E) Excavation Roller	
2024 Taxiway E) Excavatio	Scraper
2024 Taxiway E) Excavation Dozer	
2024 Taxiway E, Fencing	Concrete Truck
2024 Taxiway E, Fencing	Dump Truck
2024 Taxiway E, Fencing	Other General Equipment
2024 Taxiway E, Fencing	Pickup Truck
2024 Taxiway E, Fencing	Skid Steer Loader
2024 Taxiway E, Fencing	Tractors/Loader/Backhoe
2024 Taxiway E G Grading	Dozer
2024 Taxiway E) Grading	Grader
2024 Taxiway E, Grading	Roller
2024 Taxiway E, Hydroseec Hydroseeder	
2024 Taxiway E, Hydroseec Off-Road Truck	
2024 Taxiway ELLighting Dump Truck	
2024 Taxiway EL Lighting Loader	
2024 Taxiway EL Lighting	Other General Equipment
2024 Taxiway E) Lighting Pickup Truck	
2024 Taxiway ELLighting Skid Steer Loader	
2024 Taxiway ELLighting Tractors/Looder/Backhoe	
2024 Taxiway E, Markings	Flatbed Truck
2024 Taxiway E) Markings Other General Equipment	
2024 Taxiway E, Markings Pickup Truck	
2024 Taxiway E, Soil Erosio Other General Equipment	
2024 Taxiway ESSoil Erosio	Pickup Truck
2024 Taxiway E.Soil Erosio Pumps	
2024 Taxiway ESSoil Erosio Tractors/Loader/Backhoe	
2024 Taxiway E, Subbase P Dozer	
2024 Taxiway E, Subbase P Dump Truck (12 cy)	
2024 Taxiway E, Subbase P Roller	
2024 Taxiway E) Topsoil Pla Dozer	
024 Taxiway E) Topsoil Plı Dump Truck	
2024 Taxiway E) Topsoil P	Pickup Truck
2024 Building - : Concrete F Backhoe	
2024 Building - : Concrete	Concrete Ready Mix Trucks

Rollers100 Diese Off-highway Trucks60Diese ff-highway Trucks 60 Dies Tractors/Loaders/Bac Diese Other Construction Ec Diesel Off-highway Trucks60Diesel Skid Steer Loaders75 Diese Skid Steer Loaders75 Diese Tractors/Loaders/Bac Diese Off-highway Trucks60 Diese Off-highway Trucks60 Diese Off-highway Trucks60 Diese Off-highway Trucks60Diese Other Construction Ec Dies Off-highway Trucks60 Diese Dther Construction Ec Diese Off-highway Trucks60 Diese Other Construction Ec Diese Tractors/Loaders/Bac Diese Crawler Tractor/Doze Diese Off-highway Trucks60Diese Off-highway Trucks60 Diese Rollers100 Diese Crawler Tractor/Doze Dies off-highway Trucks60 Diese Pavers175 Diese
Off-highway Trucks60 Diese Other Construction Ec Diese off-highway Trucks60Diese Rollers100 Diese Rkid Steer Loaders75 Diesel
Rel
Dies Other Construction Ec Diese Other Construction EcDiesel Other Construction Ec Diese Off-highway Trucks60 Dies ther Construction Other Construction ECDies off-highway Trucks 60 Dies Off-highway Trucks60 Dies Offer Construction Ec Dies Tractors/Loaders/Bac Diese Pavers175 Diese ther Construction Ec Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diese ractors/Loaders/Bac Diese Other Construction Ec Diese Off-highway Trucks60 Diese Rollers100
Off-highway Trucks60 Diese Tractors/Loaders/Bac Diese Other Construction Ec Diese Off-highway Trucks60 Diese Tractors/Loaders/Bac Diese Off-highway Trucks60Dies Crawler Tractor/Doze Diesel Off-highway Trucks60Diese off-highway Trucks60 Diese Crawler Tractor/Doze Diese off-highway Truckso Excavators175 Dies Excavators175 Diese
Off-highway Trucks60 Diese Off-highway Trucks60 Diese
Rollers100 Diese

Crawler Tractor/Doze Diese Off-highway Trucks60 Diese Off-highway Trucks60 Diese Other Construction Ec Dies Off-highway Trucks60 Diese kid Steer Loaders75 Diese Tractors/Loaders/Bac Diese Crawler Tractor/Doze Diese Graders300 Diese Rollers100 Diese Other Construction Ec Diese Off-highway Trucks60Diese Tractors/Loaders/Bac Diese Other Construction Ec Diese Off-highway Trucks60 Diese skid Steer Loaders75 Diese Tractors/Loaders/Bac Diese Off-highway Trucks60Diesel Other Construction Ec Diese Off-highway Trucks60 Diese Other Construction Ec Diese Iff-highway Trucks60 Diese Tractors/Tors/Be Dies ractors/Loaders/Bac Dies Crawler Tractor/Doze Dies Off-highway Trucks60Dies Off-highway Trucks60Dies ollers100
ze Dies Off-highway Trucks60Diese Off-highway Trucks60Dies Tractors/Loaders/Bac Diese Off-highway Trucks60Diese Other Construction Ec Diese Off-highway Trucks60 Diese Off-highway Trucks60 Diese off-highway Trucks60 Diese Off-highway Trucks60 Dies ther Construction Ec Diese Off-highway Trucks60Dies
$\begin{array}{llllllllllllllllll}0.59 & 35.7709 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000971 & 0.002763 & 1.386684 & 3.78 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 32.226 & 0.674104 & 1.451475 & 536.5624 & 0.00162 & 0.106831 & 0.103626 & 0.092216 & 0.008477 & 0.018253 & 6.7474 & 2.04 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 32.226 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000658 & 0.002298 & 6.750277 & 1.79 E-05\end{array}$ $\begin{array}{llllllllllll}15.68 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00032 & 0.001118 & 3.284439 & 8.72 \mathrm{E}-06\end{array}$ $\left.\begin{array}{llllllllllllllllllllll}1568 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.001947 & 0.003474 & 1.11668\end{array}\right)$ $\begin{array}{llllllllllllll}15.68 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000336 & 0.001056 & 0.698054 & 1.94 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}15.68 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00032 & 0.001118 & 3.284439 & 8.72 E-06\end{array}$ $\begin{array}{lllllllllllllllllllll}15.68 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.000893 & 0.00117 & 0.188962 & 5.95 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllll}15.68 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.000964 & 0.00096 & 0.252202 & 7.62 \mathrm{E}-0\end{array}$

 $0.59709 .4857 \quad 0.0523070 .18273153679120 .001425 \quad 0.011908$ 50.59 $\begin{array}{lllllllllllllllllllll} & 91.8784 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001875 & 0.006551 & 19.24547 & 5.11 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.43 & 91.8784 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001967 & 0.006186 & 4.090311 & 1.14 \mathrm{E}-05\end{array}$ $\begin{array}{lrrrlllllllll}.59 & 91.8784 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001875 & 0.006551 & 19.24547 & 5.11 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}29.6 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000634 & 0.001993 & 1.317755 & 3.67 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}59.2 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001208 & 0.004221 & 12.40043 & 3.29 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllll}29.6 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.240901 & 0.233674 & 0.83744 & 0.000382 & 0.000646 & 0.091636 & 3.37 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}29.6 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.00182 & 0.001813 & 0.476096 & 1.44 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}.59 & 72.53558 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.001051 & 0.002952 & 4.431395 & 1.19 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 510.4356 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.010419 & 0.036397 & 106.9193 & 0.000284\end{array}$ $\begin{array}{lllllllllllll}0.59 & 72.53558 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001481 & 0.005172 & 15.1938 & 4.03 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 70.67569 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.001918 & 0.005459 & 2.739792 & 7.47 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 79.49067 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.001152 & 0.003235 & 4.8563 & 1.31 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 79.49067 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001623 & 0.005668 & 16.65066 & 4.42 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 79.49067 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001623 & 0.005668 & 16.65066 & 4.42 \mathrm{E}-0.5\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 14.89625 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.0003 & 0.000759 & 0.910013 & 2.48 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 53.64997 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001095 & 0.003826 & 11.23789 & 2.98 \mathrm{E}-05\end{array}$ $0.43 \quad 29.7925 \quad 0.2580850 .811691536 .69780 .0014930 .0626210 .0607430 .0462380 .0006380 .0020061 .326325 \quad 3.69 \mathrm{E}-06$ $\begin{array}{lllllllllllllllllllllll}0.59 & 14.89625 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000304 & 0.001062 & 3.12027 & 8.28 E-06\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 14.89625 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000404 & 0.00115 & 0.577463 & 1.57 E-06\end{array}$ $\begin{array}{llllllllllllllllll}0.21 & 14.89625 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.000849 & 0.001061 & 0.179517 & 5.65 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 19.0672 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.000464 & 0.001167 & 0.184506 & 6.78 \mathrm{E}-07\end{array}$ \begin{tabular}{lllllllllllllllllllll}
\hline \& 19.0672 \& 1.495637 \& 3.76397 \& 595.1489 \& 0.002188 \& 0.171506 \& 0.16636 \& 0.352256 \& 0.000464 \& 0.001167 \& 0.184506 \& $6.78 \mathrm{E}-07$

 $\begin{array}{llllllllllll}36 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.240901 & 0.233674 & 0.83744 & 0.000756 & 0.001278 & 0.181429 & 6.67 \mathrm{E}-07 \\ 36 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.001118 & 0.002509 & 1.016978 & 2.83 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}48 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00098 & 0.003423 & 10.05441 & 2.67 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}39.7232 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.001233 & 0.002768 & 1.122156 & 3.12 \mathrm{E}-06\end{array}$ $39.72320 .319365 \quad 2.565449595 .86520 .0015830 .0293530 .0284720 .098284$ $\begin{array}{llllllllllllll}59 & 165.5133 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003378 & 0.011802 & 34.66955 & 9.21 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll} & 79.4464 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001701 & 0.005349 & 3.536854 & 9.84 \mathrm{E}-06\end{array}$ $\begin{array}{lrllllllllll}.59 & 119.1696 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002432 & 0.008497 & 24.96207 \\ 6.63 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}39.7232 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.004932 & 0.008801 & 2.828828 & 8.54 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}39.7232 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.000801 & 0.002023 & 2.426694 & 6.61 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}39.7232 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.000966 & 0.002431 & 0.384387 & 1.41 \mathrm{E}-06\end{array}$ 78.40 .1273180 .3575866536 .77650 .0014430 .0322110 .0312450 .0191370 .001136 0.003191 4.789668 1.29E-05 $\begin{array}{lllllllllll}78.4 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.0016 & 0.00559 & 16.4222 \\ 4.36 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}78.4 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.000755 & 0.002503 & 4.789827 & 1.27 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}78.4 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.009735 & 0.017371 & 5.583139 & 1.69 \mathrm{E}-05\end{array}$ 78.40 .2580850 .811691536 .69780 .0014930 .0626210 .0607430 .046238 0.001678 0.0052793 .490269 9.71E-06 $\begin{array}{llllllllllll} & 0.47356 & 1.82751 & 59.012 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.0016 & 0.00559 & 16.4222 & 4.36 \mathrm{E}-05\end{array}$

78.4 \& 0.417356 \& 1.187531 \& 596.0587 \& 0.001624 \& 0.064693 \& 0.062752 \& 0.034547 \& 0.002128 \& 0.006055 \& 3.03923 \& $8.28 \mathrm{E}-06$

\hline 55556 \& 0.052307 \& 0.182731 \& 536.7912 \& 0.001425 \& 0.011908 \& 0.01155 \& 0.013356 \& 0.000889 \& 0.003106 \& 9.123443 \& $2.42 \mathrm{E}-05$
\end{tabular}

 $\begin{array}{llllllllllllllll}.43 & 43.55556 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000932 & 0.002933 & 1.939039 & 5.39 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 43.55556 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000889 & 0.003106 & 9.123443 & 2.42 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.21 & 43.55556 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.002678 & 0.002668 & 0.700562 & 2.12 \mathrm{E}-06\end{array}$ $0.59 \quad 28800.0523070 .182731536 .79120 .0014250 .011908$ 0.01155 0.0133560 .0587850 .205359603 .26440 .00160 $0.5966 .205330 .1273180 .357586536 .77560 .0014430 .0322110 .0312450 .0191370 .000959 \quad 0.0026944 .0446631 .09 \mathrm{E}-05$ $\begin{array}{llllllllllllllllllll}0.59 & 66.20533 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001351 & 0.004721 & 1386782 & 3.68 \mathrm{E}\end{array}$ 0.5966 .205330 .0523070 .182731536 .79120 .0014250 .011908

 | 59 | 49.654 | 0.127318 | 0.357586 | 536.7756 | 0.001443 | 0.032211 | 0.031245 | 0.019137 | 0.00072 | 0.002021 | 3.033497 | $8.15 \mathrm{E}-06$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $59 \quad 132.41070 .052307$ 0. 18273153670120.001425 0.011008

 $\begin{array}{llllllllllllll}39.7232 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.000383 & 0.001268 & 2.426878 & 6.45 \mathrm{E}-06\end{array}$ 39.72320 .4173561 .187531536 .05870 .0016240 .0646930 .015550 .0345470001078
 $\begin{array}{rrrrrrrrrrr}49.654 & 0.231824 & 0.588102 & 536.729 & 0.001489 & 0.040091 & 0.038888 & 0.034682 & 0.004492 & 0.011395 & 10.39966 \\ 18.69333 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000271 & 0.000761 & 1.142026 \\ 3.05 E-06\end{array}$ $\begin{array}{lllllllllllll}0.59 & 27.11111 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000553 & 0.001933 & 5.678878 & 1.51 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}108.4444 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002213 & 0.007733 & 22.71551 & 6.03 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}.43 & 108.4444 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.002322 & 0.007301 & 4.82781 & 1.34 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 108.4444 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002213 & 0.007733 & 22.71551 & 6.03 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}0.21 & 108.4444 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.006178 & 0.007723 & 1.306879 & 4.11 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.21 & 108.4444 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.006668 & 0.006643 & 1.744256 & 5.27 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 14.6853 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000213 & 0.000598 & 0.897165 & 2.41 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 14.6853 & 0.070474 & 0.225529 & 536.7797 & 0.001435 & 0.016427 & 0.015934 & 0.017337 & 0.000202 & 0.000646 & 1.538008 & 4.11 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 14.6853 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000399 & 0.001134 & 0.569286 & 1.55 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}13.23 & 0.674104 & 1.451475 & 536.5624 & 0.00162 & 0.106831 & 0.103626 & 0.092216 & 0.00348 & 0.007493 & 2.770064 & 8.36 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}13.23 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00027 & 0.000943 & 2.771246 & 7.36 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}33.12 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000676 & 0.002362 & 6.93754 & 1.84 E-05\end{array}$ $\begin{array}{lllllllllllll}33.12 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.004112 & 0.007338 & 2.358591 & 7.12 \mathrm{E}-06\end{array}$ 33.120 .2580850 .811691536 .6978 0.001493 0.0626210 .0607430 .0462380 .000709 0.00223 1.474461 $\begin{array}{llllllllllll}33.12 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000676 & 0.002362 & 6.93754 & 1.84 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllll}33.12 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.001887 & 0.002359 & 0.399134 & 1.26 \mathrm{E}-06\end{array}$ $33.122 .656022 \quad 2.64619694 .8278 \quad 0.00210 .3509320 .3404040 .402188$
 24539430.2580850 .81169153669780 .0014930 .0626210 .0607430 .04623800 .0052530 .01652210 .02464 $\begin{array}{llllllllllllllllll}0.59 & 245.3943 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.005009 & 0.017498 & 51.40195 & 0.000136\end{array}$

 0.0523070 .18273153679120 .0014250 .0119080 .011550 .0133560 .000490 .00171150 .0272031 .335 $\begin{array}{lllllllllllllllllllllll}12 & 2.473256 & 4.183481 & 593.756 & 0.002183 & 0.040901 & 0.233674 & 0.83744 & 0.000155 & 0.000262 & 0.03715 & 1.33 E \mathrm{E}-07\end{array}$ 122.656022 L. 24619 594.8278 $\begin{array}{lllllllllllllllll}12 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.000738 & 0.000735 & 0.193012 & 5.83 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllllll} & 25.08842 & 0.127318 & 0.35786 \\ 176.5467 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003604 & 0.012589 & 36.98066 & 9.82 \mathrm{E} & 0.05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 176.5467 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.003604 & 0.012589 & 36.98066 & 9.82 \mathrm{E}-05 \\ 0.59 & 25.08842 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000512 & 0.001789 & 5.255191 & 1.4 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllll}0.59 & 25.08842 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000512 & 0.001789 & 5.255191 \\ 1.4 E-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 24.44492 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000664 & 0.001888 & 0.947624 & 2.58 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.59 & 32.63467 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000473 & 0.001328 & 1.99374 & 5.36 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllll}0.59 & 32.63467 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000666 & 0.002327 & 6.835879 & 1.82 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.59 & 32.63467 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000666 & 0.002327 & 6.835879 & 1.82 E-05\end{array}$ $\begin{array}{lrrrrrrrrrrr}0.21 & 320 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.019675 & 0.019602 & 5.146986 \\ 0.59 & 60 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001225 & 0.004278 & 1256801\end{array}$ $\begin{array}{lllllllllllll}60 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001225 & 0.004278 & 12.56801 & 3.34 \mathrm{E}-05\end{array}$ $59 \quad 320.654952 \quad 1.47016 \quad 595.98320 .001660 .0980260 .0950850 .0603990 .0136310 .03059712 .40345$ $800.0523070 .182731536 .79120 .0014250 .011908 \quad 0.011550 .0133560 .0016330 .00570416 .75734 \quad 4.45 \mathrm{E}-05$ $\begin{array}{llllllllllll}16 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000327 & 0.001141 & 3.351469 & 8.9 \mathrm{E}-06 \\ 10 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000204 & 0.000713 & 2.094668 & 5.56 \mathrm{E}-06\end{array}$ | 10 | 0.052307 | 0.182731 | 536.7912 | 0.001425 | 0.011908 | 0.01155 | 0.013356 | 0.000204 | 0.000713 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 0.052307 | 0.182731 | 536.7912 | 0.001425 | 0.011908 | 0.01155 | 0.013356 | $8.16 \mathrm{E}-05$ | 0.000285 | $\begin{array}{lllllllllllll}240 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.010223 & 0.022947 & 9.302588 & 2.59 \mathrm{E}-05\end{array}$ $\left.\begin{array}{rrrrrrrrrrr}240 & 0.559297 & 2.73688 & 595.8792 & 0.001663 & 0.06081 & 0.058986 & 0.092933 & 0.00233 & 0.011404 & 2.482885 \\ 60 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001225 & 0.004278 & 12.56801\end{array}\right) 3.34 \mathrm{E}-05$

2024 Building - :Interior BuFork Truck	
24 Building - : Interior B	uman
24 Building - :Interior BLTool Truc	
2024 Building - -Interior BLTractor Traile	
24 Building - :Roofing	
2024 Building -: Roofing	Man Lift (Fas
224 Building - :Roofing	Material De
24 Building -:Roofing	Tractor Trailer- M
2024 Building - : Security \& High	
ding - : Security	Tool Tr
2024 Building - :Structural 40 Ton Cr	
2024 Building - Structural Fork Truck	
2024 Building -: Structura	Tool Truck
24 Building - Structural Tractor Tr	
2024 Building - : Concrete	f Backhoe
2024 Building -: Concrete F Concrete	
2024 Building -: Concrete FTool Truck	
20 24 Buildidi - : Concrete FTractor Trailer-	
2024 Building - : Constructi Tractor Trailers Temp Fac.	
2024 Building - :Exterior W	WFork Truck
2024 Building -:Exterior W Man Lift	
2024 Building -: Exterior WTool Truck	
2024 Building - :Interior Bu Fork	
2024 Building - : Interior BL Man Lift	
2024 Building - :Interior BuTool Truck	
2024 Building - : Interior BL Tractor Trailer- Material Delivery2024 Building - Roofing High Lift	
2024 Building -: Roofing Man Lift (Fascia Constru	
2024 Building - : Structural 40 Ton Cra	
2024 Building - :Structural Fork Truck	
2024 Building - Structural Tool Truck	
2024 Building - Structural Tractor Trailer-2024 Demolitior Building D. Bob Cat	
2024 Demolitior Building D Dump Truck	
2024 Demolitior Building D Excavator with	
2024 Demolitior Building D Generator Sets	
2024 Demolitior Building D. Pickup Truck	
2024 Access RooAsphalt Pli Asphalt Paver	
2024 Access RocAsphalt Pli Dump Truck	
2024 Access RoiAsphalt Pliother Genera	
2024 Access RoA Asphalt Pli Roller	
2024 Access RocAsphalt Pli Skid Steer Loader	
2024 Access Roa Asphalt Pli Surfacing Equipment (Grooving	
2024 Access Roclearing al Chain Saw	
2024 Access Ro:Clearing al Chipper/Stum2024 Access Roclearing al Pickup Truck	
2024 Access Roc Concrete FAir Compressor	
2024 Access Ro: Concrete FConcrete Saws	
2024 Access Ro\% Concrete FConcrete Truck	
2024 Access Roc Concrete Fother General Equipment	
2024 Access Roi Concrete FPickup Truck	
2024 Access RoiConcrete FSlip Form Paver	
2024 Access Roc Concrete F Surfacing Equipment (Grooving	
2024 Access RocCurbing Cur	
2024 Access Roi Curbing	Pick
2024 Access Roi Drainage - Dozer	
2024 Access Roi Drainage - Dump Truck	
2024 Access Roo Drainage - Excavator	
2024 Access Roi Drainage - Loader	
2024 Access Roc Drainage - Other General 2024 Access Rǒ Drainage - Pickup Truck	
2024 Access Roi Drainage - Roller	
2024 Access Roi Drainage - Dump Truck	
2024 Access RȯDrainage - Loader	
2024 Access Ro Drainage - Other General 2024 Access Rǒ Drainage - Pickup Truck	
2024 Access Roi Drainage - Tractors/Loader/Backhoe	
2024 Access Roi Dust Contt Water Truck	
2024 Access Roe Excavation Dozer	
2024 Access Roe Excavatio	n Dump Truck
2024 Access RoEExcavation Pickup Truck	
2024 Access Roe Excavation Roller	
2024 Access Roe Excava	
2024 Access Roe Excavation Dump Truck (12 cy)	
2024 Access Roo Excavation Excavator	
2024 Access Roo Excavation Pickup Truck	
2024 Access Roz Excavation Roller	
024 Access Roe Excavation Dozer	
024 Access Ro¢ Fencing Concrete Truck	
2024 Access Roi Fencing	Dump Truck
2024 Access Roi Fencing	Other General Equip
2024 Access Roi Fencing	Pickup Truck
2024 Access Roi Fencing	Skid Stee
2024 Access Roi Fencing	Tractors/Loader/Backhoe
2024 Access RóGrading	Dozer
2024 Access RoćGrading	Grader
2024 Access Rö́Grading	Roller
24 Access RoĉHydroseec Hydroseeder 24 Access Ro¿̈Hydroseec Off-Road Truck 24 Access Roс Markings Flatbed Truck 24 Access Rō Markings Other General Equipment 224 Access Ro¿Markings Pickup Truck 24 Access Ro¿Sidewalks Concrete Truck 24 Access Ro¿Sidewalks Dump Truck 224 Access RoéSidewalks Pickup Truck 24 Access RṓSidewalks Tractors/Loader/Backhoe	

2024 Building - :Interior BL Fork Truck
2024 Building
2024 Building - : Interior BL Tractor T
2024 Building - :Roofing High Lift
2024 Building : :Roofing \quad Man Lift (Fascia Construction)
2024 Building - :Roofing Tractor Trailer-Material Delivery
2024 Building - Security \& To
2024 Building - : Structural 40 Ton Crane
2024 Building - :Structural Fork Truck
2024 Building - :Structural Tool Truck
2024 Building - : Concrete F Backhoe
2024 Building - : Concrete F Concrete Ready Mix Truck
2024 Building - :Concrete FTool Truck
2024 Building - : Concrete FTractor Trailer- Material Delivery
2024 Building - :Constructi Survey Crew Trucks
2024 Building - :Exterior W Fork Truck
2024 Building - : Exterior WTool Truc
2024 Building - : Interior BL Fork Truck
2024 Building - :Interior BL Man Lift
2024 Building - :Interior BL Tractor Trailer-Material Delivery
2024 Building - : Roofing Man Lift (Fascia Con
2024 Building - : Rooofing \quad Tractor Trailer-Material Delivery
2024 Building - : Security \& High Lift
2024 Building - : Structural 40 Ton Crane
2024 Building - : Structural Fork Truck
2024 Building - : Structural Tractor Trailer- Steel Deliverie
2024 Demolitior Building D Bob Cat
2024 Demolitior Building D. Excavator with Bucket
2024 Demolitior Building D Generator Sets
2024 Demolitior Building D Pickup Truck
2024 Access RoiAsphalt PliAsphalt Paver
2024 Access RocAsphalt Pli Other General Equipment
2024 Access RocAsphalt Pli Pickup Truck
2024 Access RǒAsphalt Pli Rolle
2024 Access Ro Asphalt Pl: Surfacing Equipment (Grooving)
2024 Access Roclearing arChain Saw
2024 Access RoćClearing aıChipper/Stump Grinder
2024 Access RoćClearing al Pickup Truck
2024 Access Ro天Concrete FConcrete Saw
2024 Access Roc Concrete FConcrete Truck
2024 Access Roé Concrete FOther General Equipment
2024 Access Rō Concrete FPickup Truck
2024 Access Roc Concrete FRubber Tired Load
2024 Access RǒConcrete FSurfacing Equipment (Grooving)
2024 Access RoćCurbing Concrete Truck
2024 Access RocCurbing Other General Equipment
2024 Access Roe Curbing Pickup Truck
2024 Access Roa Drainage - Doze
2024 Access RoDrage - Dump Truck
2024 Access Roc Drainage - Loader
2024 Access Rǒ Drainage - Other General Equipment
2024 Access Ro¿ Drainage - Pickup Tru
2024 Access RoCDrainage - Rolle
2024 Access Rǒ Drainage - Loader
2024 Access Ró Drainage - Pickup Truck
2024 Access Roc Drainage - Tractors/Loader/Backhoe
2024 Access Rō Dust Contr Water Truck
2024 Access Roé Excavation Dump Truck (12 cy)
2024 Access Roe Excavation Pickup Truck
2024 Access Roć Excavation Doze
2024 Access Roe Excavation Dump Truck (12 cy)
2024 Access Roé Excavation Excavator
2024 Access Roó Excavation Pickup Truck
2024 Access Rocexcavation Roller
2024 Access RoE Excavation Dozer
2024 Access Roz Fencing Concrete Truck
2024 Access Rocerencing Dump Truck
2024 Access Rǒ Fencing Pickup Truck
2024 Access Roz Fencing Skid Steer Loader
2024 Access RoéGrading Dozer
2024 Access RṓGrading Grade
2024 Access RozGrading Roller
2024 Access Roa Hydroseec Off-Road Truck
2024 Access RocMarkings Flatbed Truck
2024 Access Rǒ Markings Pickup Truck
2024 Access Ro Sidewalks Dump Truck
2024 Access RoڭSidewalks Tractors/Loader/Backhoe

O
O
R
O
O
R
R
O
O
R
O
C
O
O
O
T
O
O
O
O
O
O
O
O
O
R
R
O
O
Off-highway Trucks60 Diese Other Construction Ec Diesel Rough Terrain Forklift Diesel Off-highway Trucks60Diese Rough Terrain Forklift Diese Rough Terrain Forklift Diese Off-highway Trucks60Diese Off-highway Trucks60 Tiese Rough Terrain Forklift Diese Rough Terrain Forklift Diese Off-highway Trucks60 Diese
Cranes300 Diese

Diesel
ED
Diesel
Other Construction Ec Diese Off-highway Trucks60 Diese
Off-highway Trucks60 Diese Off-highway Trucks60 Diese Tractors/Loaders/Bac Diese Off-highway Trucks60 Diese Other Construction Ec Diesel Off-highway Trucks60 Diese Off-highway Trucks60Diese Off-highway Trucks60 Diesel Off-highway Trucks60 Diese Other Construction Ec Diese Rough Terrain Forklift Diese Off-highway Trucks60Diese Off-highway Trucks60Diese Other Construction Ec Diese Rough Terrain Forklift Diese Off-highway Trucks60Diese Off-highway Trucks60Diese Rough Terrain Forklift Diese Rough Terrain Forklift Diesel Off-highway Trucks60Diesel Off-highway Trucks60 Diese
Off-highway Trucks60Diese Rough Terrain Forklift Diese Off-highway Trucks60Diese Cranes300 Diesel ther Construction Ec Dies Off-highway Trucks60Diese Tractors/Loaders/Bac Dies Tractors/Loaders/Bac Diese
Off-highway Trucks60Diese Eff-highway Trucks60 Dies Other Construction Ec Diese Off-highway Trucks60 Diese Pavers175 Diese Off-highway Trucks60 Diese off-highway Trucks60 Diese Rollers100
Skid Steer Loaders75 Diese Other Construction Ec Diese Other Construction Ec Diese Other Construction Ec Diese Off-highway Trucks60Diese Other Construction Ec Diese Other Construction Ec Diese Off-highway Trucks60Diesel Other Construction Ec Diesel Off-highway Trucks60Diese Tractors/Loaders/Bac Diese Tractors/Loaders/Bac Diese
Pavers175 Diese Other Construction Ec Diese Pavers175 Pavers175 Diese
Other Construction EcDies Other Construction Ec Diese Off-highway Trucks60 Diese Iff-highway Trucks60Dies Excavators175 Diesel
Tractors/Loaders/Bac Diesel Other Construction Ec Diese Off-highway Trucks60 Diese Rollers100 Diese Off-highway Trucks60Dies Tractors/Loaders/Bac Diese ther Construction Ec Diese Off-highway Trucks60 Diese Tractors/Loaders/Bac Diese Off-highway Trucks60 Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diese Off-highway Trucks60 Diese Rollers100 Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diesel Off-highway Trucks60Dies Rollers100

Scrapers600 Diese Crawler Tractor/Doze Diese Off-highway Trucks60 Diese Off-highway Trucks60 Dies Other Construction Ec Diese Off-highway Trucks60 Dies kid Steer Loaders75 Diese Tractors/Loaders/Bac Diese Crawler Tractor/Doze Diesel Graders300 Diese Rollers100 Diese Other Construction Ec Diese Off-highway Trucks60Diese Other Construction Ec Diesel Off-highway Trucks60 Diese Off-highway Trucks60Diese Off-highway Trucks60 Diese off-highway Trucks60 Diese Tractors/Loaders/Bac Diese
$\begin{array}{lllllllllll}24 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00049 & 0.001711 & 5.027203 \\ 1.33 E-05\end{array}$ $\begin{array}{lllllllllllllll}960 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.040892 & 0.09179 & 37.21035 & 0.00010\end{array}$ $1200.0523070 .182731536 .79120 .001425 \quad 0.011908$ $\begin{array}{lllllllllllll}120 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002449 & 0.008557 & 25.13602 & 6.67 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}120 & 0.529425 & 1.320666 & 596.0214 & 0.001641 & 0.079303 & 0.076924 & 0.047138 & 0.004132 & 0.010307 & 4.651592 & 1.28 \mathrm{E}-05\end{array}$ $120 \quad 0.5592972 .73688595 .87920 .001663 \quad 0.060810 .05898600929330 .00116500057021 .241442$

 $3200.529425 \quad 1.3206665960214 \quad 0.016410 .079303$ 0.07624 0.047138 0.0011018 0.027485 | 320 | 0.529425 | 1.320666 | 596.0214 | 0.001641 | 0.079303 | 0.076924 | 0.047138 | 0.011018 | 0.027485 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 80 | 0.052307 | 0.182731 | 536.7912 | 0.001425 | 0.011908 | 0.01155 | 0.013356 | 0.001633 | 0.005704 | $\begin{array}{llllllllllll}80 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001633 & 0.005704 & 16.75734 & 4.45 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllll}120 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.005112 & 0.011474 & 4.651294 & 1.3 \mathrm{E}\end{array}$ $\begin{array}{lllllllllllllll} & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.005112 & 0.011474 & 4.651294 & 1.3 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllll}60 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001225 & 0.004278 & 12.56801 & 3.34 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrr}16 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000327 & 0.001141 & 3.351469\end{array} 8.9 \mathrm{E}-06$ $\begin{array}{rrrrrrrrrrr}320 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.019675 & 0.019602 & 5.146986 \\ 60 & 0.052307 & 1.56 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrr}60 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001225 & 0.004278 & 12.56801\end{array} 3.34 \mathrm{E}-05$ $\begin{array}{rlllllllllll}320 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.013631 & 0.030597 & 12.40345 & 3.45 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}80 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001633 & 0.005704 & 16.75734 & 4.45 \mathrm{E}-05\end{array}$ 160.0523070 .182731536 .7912 0.001425 0.011908 0.01155 $0.0133560 .000327 \begin{array}{llllllll}16 & 0.001141 & 3.351469 & 8.9 \mathrm{E}-06\end{array}$

 $\begin{array}{llllllllllll}4 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 8.16 \mathrm{E}-05 & 0.000285 & 0.837867 & 2.22 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}240 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.010223 & 0.022947 & 9.302588 & 2.59 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrr}240 & 0.559297 & 2.73688 & 595.8792 & 0.001663 & 0.06081 & 0.058986 & 0.092933 & 0.00233 & 0.011404 & 2.482885 \\ 60 & 0.052307 & 0.182731 & 536.7932 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001225 & 0.004278 & 12.56801 \\ 3.34 \mathrm{E}-05\end{array}$ $600.0523070 .182731536 .79120 .0014250 .011908 \quad 0.011550 .0133560 .0012250 .00427812 .56801 \quad 3.34 \mathrm{E}-05$ $\begin{array}{llllllllllll}24 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00049 & 0.001711 & 5.027203 & 1.33 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}960 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.040892 & 0.09179 & 37.21035 & 0.000104\end{array}$ $\begin{array}{lllllllllllllllll}960 & 0.559297 & 2.73688 & 595.8792 & 0.001663 & 0.06081 & 0.058986 & 0.092933 & 0.009322 & 0.045616 & 9.931538 & 2.77 \mathrm{E}-0.0\end{array}$
 $\begin{array}{lllllllllllll}120 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.002449 & 0.008557 & 25.13602 & 6.67 E-05\end{array}$ $\begin{array}{llllllllllll}120 & 0.559297 & 2.73688 & 595.8792 & 0.001663 & 0.06081 & 0.058986 & 0.092933 & 0.001165 & 0.005702 & 1.241442 & 3.46 \mathrm{E}-06\end{array}$ $8 \quad 0.052307 \quad 0.182731536 .79120 .0014250 .011908 \quad 0.011550 .013356$ $\begin{array}{lllllllllll} & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000163 & 0.00057 & 1.675734 \\ 4.45 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllllllllll}320 & 0.529425 & 1.320666 & 596.0214 & 0.001641 & 0.079303 & 0.076924 & 0.047138 & 0.011018 & 0.027485 & 12.40425 & 3.42 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}80 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001633 & 0.005704 & 16.75734 & 4.45 \mathrm{E}-05\end{array}$ 800.098349 .32069

 $60 \quad 0.0523070 .182731536 .79120 .0014250 .011908$ $\begin{array}{lllllllllllllllllllllll}16 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000327 & 0.001141 & 3.351469 & 8.9 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}9936 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.402807 & 0.708489 & 2081.262 & 0.0055\end{array}$

 49680.0846450 .2805265336 .79340 .0014270 .0205010 .019886 $\begin{array}{lllllllllllllllllllll}4968 & 0.319365 & 2.565449 & 595.8652 & 0.001583 & 0.029353 & 0.028472 & 0.098284 & 0.030082 & 0.241646 & 56.12606 & 0.000149\end{array}$ $\begin{array}{lllllllllllllllll}5796 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.118304 & 0.413285 & 1214.07 & 0.003224\end{array}$ $\begin{array}{llllllllllllll}1.998 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 4.03 \mathrm{E}-05 & 0.000102 & 0.122058 & 3.32 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllllllllllll}.195948 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000147 & 0.000513 & 1.507312 & 4 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}3.996 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 8.55 \mathrm{E}-05 & 0.000269 & 0.177897 & 4.95 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}1.998 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 4.08 \mathrm{E}-05 & 0.000142 & 0.418515 & 1.11 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}1.998 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 5.42 \mathrm{E}-05 & 0.000154 & 0.077454 & 2.11 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllllllllll}1.998 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.000114 & 0.000142 & 0.024078 & 7.58 \mathrm{E}-08\end{array}$ $\begin{array}{lllllllllllll}2.55744 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 6.22 \mathrm{E}-05 & 0.000157 & 0.024747 & 9.1 \mathrm{E}-08\end{array}$ \begin{tabular}{lllllllllll}
7.2 \& 2.473256 \& 4.183481 \& 593.756 \& 0.002183 \& 0.240901 \& 0.233674 \& 0.83744 \& 0.000151 \& 0.000256 \& 0.036286

\hline

 $\mathbf{1 . 3 3 \mathrm { E } - 0 7}$ $\begin{array}{llllllllllllllllll}7.2 & 0.654952 & 1.40065 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.000224 & 0.000502 & 0.203396 & 5.66 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllllll}5.328 & 0.654952 & 1.47016 & 595.9832 & 0.00166 & 0.098026 & 0.095085 & 0.060399 & 0.000165 & 0.000371 & 0.150513 & 4.19 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllllll}5.328 & 0.319365 & 2.565449 & 595.8652 & 0.001583 & 0.029353 & 0.028472 & 0.098284 & 4.43 \mathrm{E}-05 & 0.000356 & 0.082591 & 2.19 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllll}22.2 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000453 & 0.001583 & 4.650163 & 1.23 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}10.656 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000228 & 0.000717 & 0.474392 & 1.32 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}15.984 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000326 & 0.00114 & 3.348117 & 8.89 \mathrm{E}-06\end{array}$ $\begin{array}{rlllllllllll}5.328 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.000662 & 0.001181 & 0.379426 & 1.15 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}5.328 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.000107 & 0.000271 & 0.325488 & 8.86 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllll}5.328 & 0.177152 & 0.447389 & 536.7527 & 0.001462 & 0.045103 & 0.04375 & 0.027391 & 0.000107 & 0.000271 & 0.325488 & 8.86 \mathrm{E}-07 \\ 5.328 & 1.495637 & 3.763971 & 595.1489 & 0.002188 & 0.171506 & 0.16636 & 0.352256 & 0.00013 & 0.000326 & 0.051557 & 1.9 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllll}48 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00098 & 0.003423 & 10.05441 & 2.67 \mathrm{E}-05\end{array}$

48 \& 0.177152 \& 0.447389 \& 536.7527 \& 0.001462 \& 0.045103 \& 0.04375 \& 0.027391 \& 0.000968 \& 0.002444 \& 2.932325

\hline
\end{tabular} $\begin{array}{llllllllllll}48 & 0.177152 & 0.447169 & 536.7527 & 0.00146 & 0.045103 & 0.043 & 0.027391 & 0.000968 & 0.002444 & 2.932325 & 7.99 \mathrm{E}-06 \\ 48 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001028 & 0.003232 & 2.1369 & 5.94 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}48 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00098 & 0.003423 & 10.05441 & 2.67 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}38.72 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 0.000561 & 0.001576 & 2.36551 & 6.36 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}38.72 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00079 & 0.002761 & 8.110554 & 2.15 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}38.72 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 0.000373 & 0.001236 & 2.365588 & 6.29 E-06\end{array}$ $\begin{array}{llllllllllllllllllllll}38.72 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.004808 & 0.008579 & 2.757387 & 8.33 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}38.72 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000829 & 0.002607 & 1.723766 & 4.79 E-06\end{array}$ $\begin{array}{lllllllllllll}38.72 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.00079 & 0.002761 & 8.110554 & 2.15 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}38.72 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.001051 & 0.00299 & 1.501008 & 4.09 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}.59 & 21.51111 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000439 & 0.001534 & 4.505864 & 1.2 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}0.59 & 21.51111 & 1.090944 & 1.946746 & 625.6994 & 0.001889 & 0.241644 & 0.234395 & 0.290885 & 0.002671 & 0.004766 & 1.531882 & 4.63 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.43 & 21.51111 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.000461 & 0.001448 & 0.957648 & 2.66 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 21.51111 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000439 & 0.001534 & 4.505864 & 1.2 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.21 & 21.51111 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.001323 & 0.001318 & 0.345992 & 1.05 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 2880 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.058785 & 0.205359 & 603.2644 & 0.001602\end{array}$ $8.880 .1273180 .357586536 .77560 .0014430 .0322110 .0312450 .0191370 .0001290 .0003610 .5425031 .46 \mathrm{E}-06$ $8.880 .0523070 .182731536 .79120 .0014250 .0119080 .011550 .0133560 .0001810 .0006331 .860065 \quad 4.94 \mathrm{E}-06$ 8.880 .0523070 .182731536 .79120 .0014250 .0119080 .011550 .013356 $\begin{array}{llllllllllllll}4.098462 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000111 & 0.000317 & 0.15888 & 4.33 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}6.66 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 9.65 \mathrm{E}-05 & 0.000271 & 0.406877 & 1.09 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}17.76 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000363 & 0.001266 & 3.72013 & 9.88 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllllll}5.328 & 0.084645 & 0.280526 & 536.7934 & 0.001427 & 0.020501 & 0.019886 & 0.013129 & 5.13 \mathrm{E}-05 & 0.00017 & 0.325513 & 8.65 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}5.328 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000109 & 0.00038 & 1.116039 & 2.96 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}5.328 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 0.000145 & 0.000411 & 0.206544 & 5.63 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllllll}6.66 & 0.231824 & 0.588102 & 536.729 & 0.001489 & 0.040091 & 0.038888 & 0.034682 & 0.000602 & 0.001528 & 1.394887 & 3.87 \mathrm{E}-06\end{array}$

 $\begin{array}{lllllllllllllllll}.59 & 13.33333 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000272 & 0.000951 & 2.792891 & 7.42 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 53.33333 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001089 & 0.003803 & 11.17156 & 2.97 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.43 & 53.33333 & 0.258085 & 0.811691 & 536.6978 & 0.001493 & 0.062621 & 0.060743 & 0.046238 & 0.001142 & 0.003591 & 2.374333 & 6.6 \mathrm{E}-06 \\ 0.59 & 53.33333 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001089 & 0.003803 & 11.17156 & 2.97 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 53.33333 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001089 & 0.003803 & 11.17156 & 2.97 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.21 & 53.33333 & 3.281564 & 4.101785 & 694.13 & 0.002185 & 0.457728 & 0.443996 & 0.633997 & 0.003039 & 0.003798 & 0.642727 & 2.02 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}0.21 & 53.33333 & 2.656022 & 2.64619 & 694.8278 & 0.0021 & 0.350932 & 0.340404 & 0.402188 & 0.003279 & 0.003267 & 0.857831 & 2.59 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.59 & 2.9548 & 0.127318 & 0.357586 & 536.7756 & 0.001443 & 0.032211 & 0.031245 & 0.019137 & 4.28 \mathrm{E}-05 & 0.00012 & 0.180517 & 4.85 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}.59 & 2.9548 & 0.070474 & 0.225529 & 536.7797 & 0.001435 & 0.016427 & 0.015934 & 0.017337 & 4.06 \mathrm{E}-05 & 0.00013 & 0.30946 & 8.27 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}2.9548 & 0.417356 & 1.187531 & 596.0587 & 0.001624 & 0.064693 & 0.062752 & 0.034547 & 8.02 \mathrm{E}-05 & 0.000228 & 0.114545 & 3.12 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllll}2.662 & 0.674104 & 1.451475 & 536.5624 & 0.00162 & 0.106831 & 0.103626 & 0.092216 & 0.0007 & 0.001508 & 0.557363 & 1.68 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}2.662 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 5.43 \mathrm{E}-05 & 0.00019 & 0.557601 & 1.48 \mathrm{E}-06\end{array}$ 32.914290 .0523070 .182731536 .79120 .0014250 .011908 | 43 | 32.91429 | 0.258085 | 0.811691 | 536.6978 | 0.001493 | 0.062621 | 0.060743 | 0.046238 | 0.000705 | 0.002216 | 1.465303 | $4.08 \mathrm{E}-06$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllll}.59 & 32.91429 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.000672 & 0.002347 & 6.89445 & 1.83 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 96 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001959 & 0.006845 & 20.10881 & 5.34 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 96 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001959 & 0.006845 & 20.10881 & 5.34 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.21 & 96 & 0.052307 & 0.182731 & 536.7912 & 0.001425 & 0.011908 & 0.01155 & 0.013356 & 0.001959 & 0.006845 & 20.10881 & 5.34 E-05\end{array}$

2024 Access Ros Sidewalks Vibratory Compactor 2024 Access RozSoil Erosio Pickup Truck 2024 Access Ro: Soil Erosio Pumps 2024 Access RoíSoil Erosio Tractors/Loader/Backhoe 2024 Access Roi Street Ligh Dump Truck 2024 Access Ro: Street Ligh Loader 2024 Access RoíStreet Ligh Other General Equipment 2024 Access RoєStreet Ligh Pickup Truck 2024 Access Ro¿Street Ligh Skid Steer Loader 2024 Access Ro: Street Ligh Tractors/Loader/Backhoe 2024 Access Ro: Subbase P Dozer 2024 Access Ro: Subbase P Dump Truck (12 cy) 024 Access Rȯ Subbase P Pickup Truck 2024 Access Ró Subbase P Roller 2024 Access RoeTopsoil Ple Doze 2024 Access Rȯ Topsoil Ple Pickup Truck 2024 Access Ró Tree Plant Flatbed Truck 2024 Access Roe Tree Plant Other General Equipment 2024 Access Ro © Tree Plant Pickup Truck 2024 Access Ró Tree Plant Tractors/Loader/Backhoe 2024 Building - : Concrete F Backhoe 2024 Building - : Concrete F Concrete Ready Mix Truck 2024 Building - : Concrete FFork Truck 2024 Building - : Concrete FTractor Trailer- Material Delivery 2024 Building - : Constructi Survey Crew Trucks 2024 Building - : Constructi Tractor Trailers Temp Fac. 2024 Building - : Exterior W Fork Truck 2024 Building - : Exterior W Man Lift 2024 Building - : Exterior WTractor Trailer- Material Delivery 2024 Building - : Interior BL Fork Truck 2024 Building - : Interior BL Man Lift 2024 Building - Interior BLTool Truck 2024 Building - Interior BLTractor Tr 2024 Building - :Interior BL Tractor Trailer- Material Delivery 2024 Building - : Roofing High Lift 2024 Building - : Roofing Man Lift (Fascia Construction) 2024 Building - : Roofing \quad Material Deliveries 2024 Building - : Roofing Tractor Trailer- Material Delivery 2024 Building - : Security \& High Lift 2024 Building - : Security \& Tool Truck 2024 Building - : Structural 40 Ton Crane 2024 Building - : Structural Fork Truck 2024 Building - : Structural Tool Truck 2024 Building - :Structural Tractor Trailer- Steel Deliveries 2024 Building - :Concrete FBackhoe 2024 Building - : Concrete F Concrete Ready Mix Trucks 2024 Building - : Concrete FFork Truck 2024 Building - Concrete FTool Truck 2024 Building - : Concrete FTractor Trailer- Material Delivery 2024 Building - : Constructi Survey Crew Trucks 2024 Building - : Constructi Tractor Trailers Temp Fac. 2024 Building - : Exterior WFork Truck 2024 Building - : Exterior WMan Lift 2024 Building - : Exterior WTool Truck 2024 Building - : Exterior WTractor Trailer- Material Delivery 2024 Building - : Interior BL Fork Truck 2024 Building - Interior BL Man Lift 2024 Building - Interior BLTool Truck 2024 Building - : Interior BL Tractor Trailer- Material Delivery 2024 Building - : Roofing High Lift 2024 Building - : Roofing Man Lift (Fascia Construction) 2024 Building - : Roofing Material Deliveries 2024 Building - : Roofing Tractor Trailer-Material Delivery 2024 Building - : Security \& High Lift 2024 Building - :Security \& Tool Truck 2024 Building - : Structural 40 Ton Crane 2024 Building - :Structural Fork Truck 2024 Building - : Structural Tool Truck 2024 Building - :Structural Tractor Trailer- Steel Deliveries 2024 Site Work Constructi Survey Crew Trucks 2024 Site Work Constructi Tractor Trailers Temp Fac. 2024 Site Work Site Clearii Bulldozer 2024 Site Work Site CleariiChain Saws
2024 Site Work Site Clearii Flat Bed or Dump Trucks 2024 Site Work Site Clearii Front Loader 2024 Site Work Site Clearii Grub the site down 2'-0
2024 Site Work Site Cleari Log Chipper
2024 Site Work Site Clearii Mulcher
2024 Site Work Site Clearii Ten Wheeler
2024 Site Work Site Clearii Tractor
2024 Site Work Site Restol Bob Cat
2024 Site Work Site RestoIConcrete Ready Mix Trucks 2024 Site Work Site RestoITractor Trailer with Boom Hoist- Delivery 2024 Site Work Site Resto। Compacting Equipment
2024 Site Work Site RestoISmall Doze 2024 site Work Site RestoI Forktruck (Hoist) 2024 Site Work Site Restoı Roller
2024 Site Work Site RestoISeed Truck Spreade
2024 Site Work Site RestoITractor Trailer-Material Delivery 024 Site Work Undergrol Backhoe
2024 Site Work Undergrot Fork Truck
2024 Site Work Undergro Tractor Trailer- Material Delivery

Plate Compactors6 Diesel
Other Construction EcDiesel Off-highway Trucks60 Diesel Other Construction EcDiesel Other Construction EcDiesel
Tractors/Loaders/Bacl Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Tractors/Loaders/Bac Diesel
Other Construction Ec Diesel Off-highway Trucks60Diesel Skid Steer Loaders75 Diesel Tractors/Loaders/Ba Diesel Tractors/Loaders/Bacl Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Rollers100 Crawler Tractor/Doze Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel Off-highway Trucks60 Diesel Tractors/Loaders/Bac Diesel Tractors/Loaders/Bac Diesel Off-highway Trucks60 Diesel Other Construction EcDiesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Other Construction EcDiesel Rough Terrain ForkliftDiese! Off-highway Trucks60 Diesel Off-highway Trucks60Diesel Rough Terrain Forklift Diesel Rough Terrain Forklift Diesel Off-highway Trucks60Diesel Off-highway Trucks60 Diesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Cranes 300
Other Construction EcDiesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Tractors/Loaders/Bac Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel
Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Rough Terrain ForkliftDiesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel Rough Terrain ForkliftDiesel Off-highway Trucks 60 Diesel Off-highway Trucks60Diesel Rough Terrain ForkliftDiesel Rough Terrain ForkliftDiesel Off-highway Trucks60Diesel Off-highway Trucks60 Diesel Rough Terrain ForkliftDies Off-highway Trucks60 Diesel Cranes 300
Other Construction Ec Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Crawler Tractor/Doze Diesel Other Construction EcDiesel Off-highway Trucks60Diesel Tractors/Loaders/Bac Diesel Other Construction EcDiesel Other Construction Ec Diesel Other Construction EcDiesel Off-highway Trucks60 Diesel Tractors/Loaders/Bacl Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Plate Compactors6 Diesel Crawler Tractor/Doze Diesel Rollers100 Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Tractors/Loaders/Bac Diesel
Other Construction Ec Diesel Off-highway Trucks60 Diesel
$\left.\begin{array}{lllll} & 0.43 \\ & 96 & 2.543503 & 4.195136 & 588.0165 \\ 0.0051\end{array}\right)$
$\left.\begin{array}{lllll} & 0.43 \\ & 96 & 2.543503 & 4.195136 & 588.0165 \\ 0.0051\end{array}\right)$

$\bullet \stackrel{n}{2}$
0.43
0.43 0.43
0.59
0.43 0.43
0.21
0.59 0.59
0.59 0.59
0.43
0.59 0.59
0.21 0.21
0.59 0.59 0.59
0.59
0.59
 ? .

0.59	
	0.59
	0.59

0.59
0.21
0.59

	0.59
0.43	
0	0.59

On-Road Sources
Units for Non-Greenhouse Gases Emission: Short Ton
Units for Greenhouse Gases ($\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O) Emission: Metric Ton

ScenarioliYear $\begin{array}{ll}\text { Project } & \text { Equipmen Equipment Category } \\ 2024 \text { Taxiways } & \text { Asphalt } 18 \text { Combination Short-haul Truck } \\ 2024 \text { Taxiways } & \text { Cement M Single Unit Short-haul Truck } \\ 2024 \text { Taxiways } & \text { Dump Trui Single Unit Short-haul Truck } \\ 2024 \text { Taxiways } & \text { Dump Trui Single Unit Short-haul Truck } \\ 2024 \text { Taxiways } & \text { Passenger Passenger Car } \\ 2024 \text { Terminal \&Asphalt 18 Combination Short-haul Truck } \\ 2024 \text { Terminal f Cement MSingle Unit Short-haul Truck } \\ 2024 \text { Terminal fDump Trui Single Unit Short-haul Truck }\end{array}$

On-road Activity Material Delivery Material Delivery Material Delivery Material Delivery Employee Commut Material Delivery Material Delivery Material Delivery

Lookup Fuel DieselUrb: Diesel DieselUrb: Diese DieselUrb: Diesel DieselUrb: Diese GasolineU Gasolin DieselUrbiDiesel DieselUrba Diesel

Roadway

Urban Unr
Urban Unr
Urban Unr Urban Unr Urban Unr Urban Unr
2024 Totals
Year

Year	Emission S		NOx	SO2	PM10		PM2.5	voc	CO2	CH4	N2O	co2e
2024	NonRoad	6.495923	15.51591		0.072942339	1.189925837	1.154227	1.254158	27254.13	--	--	
2024	OnRoad	49.45708	2.036828		0.036389226	0.05161262	0.046211	1.249178	5673.515	0.143606	0.031344	
2024	Fugitive	1.97815	0.123476		0.022737	1.933242832	--	0.308729		--	--	
2024	TOTAL	57.93115	17.67622		0.132068565	3.174781289	1.200438	2.812065	32927.65	0.143606	0.031344	32939.98

ASSUMPTIONS

```
    Non-Road Equipment: MOVES3.0.2 September 2021
In addition to the overall project size dimensions (e.g., Length and width) provided by the user, an additional }10\textrm{ft length and }10\textrm{ft width is added to account for disturbance areas.
The number of employees is based on the higher of two methods: (1) number of equipment, and (2) multiply the project cost in million by 11
The average employee travels }30\mathrm{ miles round-trip from home to construction site each day.
The average on-road material delivery round-trip distance per truck is 40 miles per day.
For calculating fugitive, re-entrained PM emissions from on-road and non-road material delivery and handling equipment, a nominal VMT of 5 miles is used for each vehicle per day.
In deriving emission factors from NONROAD, the horsepower for each equipment represents the most popular in each equipment category.
The total length of each modeled scenario is used to define the number of days associated with vehicle/equipment evaporative emissions.
The choice of location and season are assumed to adequately represent differences in fuel characteristics affecting emissions.
Only two seasons (Summer and Winter) are used to represent all seasons.
14 U.S. Counties are used to represent all other counties in the U.S. (all other counties are mapped to the 14).
The default methods assume that all construction equipment use diesel as well as heavy-duty on-road vehicles, while passenger vehicles (including motorcycles) use gasoline
Fugitive emissions are only modeled for:
    Asphalt drying
    Asphalt storage and batchin
    Concrete mixing/batchin
    Soil handling
    Unstabilized land and wind erosion
    Material movement (unpaved roads)
    Material movement (paved roads)
On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
```

\qquad

```
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
    Asphalt Deliveries/Ten Wheelers
    Bulldozer
    Concrete Ready Mix Trucks
    Concrete Ready Trucks Mix for Cores
    Concrete Truck
    Crack Filler (Trailer Mounted)
    Delivery of Tanks (3)
    Distributing Tanker
    Dozer
    Dump Truck
    Dump Truck (12 cy)
```

M10 (tpy PM2.5 (tpiVOC Exhaust (tpy)
$7.05 \mathrm{E}-05 \quad 6.84 \mathrm{E}-05 \quad 4.28 \mathrm{E}-05$
$0.00023 \quad 0.0002230 .00025$
$\begin{array}{llll}0.000143 & 0.000138 & 0.00010\end{array}$
$6.38 \mathrm{E}-05 \quad 6.19 \mathrm{E}-05 \quad 7.16 \mathrm{E}-05$
$5.78 \mathrm{E}-05 \quad 5.61 \mathrm{E}-05 \quad 3.09 \mathrm{E}-05$
. 0001090.0001060 .000151
$\begin{array}{lllll}4.9 \mathrm{E}-05 & 4.76 \mathrm{E}-05 & 0.000101\end{array}$
$\begin{array}{llll}7.36 \mathrm{E}-05 & 7.14 \mathrm{E}-05 & 0.000256\end{array}$
0001670.0001620 .000103
0.0002230 .0002160 .00025
0003880.0003770 .00023
$0004920.000477 \quad 0.000552$
0.0002470 .000240 .000158
0.0029130 .0028260 .003507
0.000550 .0005340 .00040
$\begin{array}{lll}0.000492 & 0.000477 & 0.00055\end{array}$
$\begin{array}{lll}0.000492 & 0.000477 & 0.000552\end{array}$
$\begin{array}{lll}0.000446 & 0.000432 & 0.000238 \\ 0.000273 & 0.000265 & 0.000307\end{array}$ 001618 0.000380 .001570 .001948
0002730.0022650 .000307
0.0002730 .0002650 .000307
0004780.0004640 .000548
$\begin{array}{lll}0.013382 & 0.012981 & 0.01501\end{array}$
0002240.0002170 .000133
0.0002840 .0002750 .000318
.0002840 .0002750 .00031
$0.0001190 .000115 \quad 6.33 \mathrm{E}-05$
$0.0001680 .000163 \quad 9.97 \mathrm{E}-0$
$\begin{array}{llll}0.000567 & 0.00055 & 0.000636\end{array}$
$8.55 \mathrm{E}-05 \quad 8.29 \mathrm{E}-05 \quad 5.47 \mathrm{E}-05$
0.000170 .0001650 .000191
$0.0001540 .000149 \quad 8.23 \mathrm{E}-05$
$0.0007160 .000695 \quad 0.00062$
6.32E-05 $\quad 6.13 \mathrm{E}-05 \quad 3.75 \mathrm{E}-05$
0.000170 .0001650 .000191
0.0006810 .0006610 .000764
0007620.0007390 .000563
.0006810 .0006610 .000764
$0.0011660 .001131 \quad 0.001614$
0.0011910 .0011560 .001365
$\begin{array}{llll}5.39 \mathrm{E}-05 & 5.23 \mathrm{E}-05 & 3.2 \mathrm{E}-0\end{array}$
$\begin{array}{llr}5.39 \mathrm{E}-05 & 5.23 \mathrm{E}-05 & 3.2 \mathrm{E}-05 \\ 4.71 \mathrm{E}-05 & 4.57 \mathrm{E}-05 & 4.97 \mathrm{E}-0\end{array}$
$\begin{array}{lrr}4.71 \mathrm{E}-05 & 4.57 \mathrm{E}-05 & 4.97 \mathrm{E}-05 \\ 6.18 \mathrm{E}-05 & 6 \mathrm{E}-05 & 3.3 \mathrm{E}-05\end{array}$
$\begin{array}{lrr}6.18 \mathrm{E}-05 & 6 \mathrm{E}-05 & 3.3 \mathrm{E}-05 \\ 0.000552 & 0.000535 & 0.000476\end{array}$
$\begin{array}{llr}0.000552 & 0.000535 & 0.000476 \\ 6.15 E-05 & 5.97 E-05 & 6.9 E-05\end{array}$
$\begin{array}{lrr}6.15 \mathrm{E}-05 & 5.97 \mathrm{E}-05 & 6.9 \mathrm{E}-05 \\ 0.000206 & 0.0002 & 0.000231\end{array}$
$\begin{array}{lll}0.000206 & 0.0002 & 0.000231\end{array}$
$0.0012210 .00184 \quad 0.00147$
$0.0002310 .000224 \quad 0.00017$
$000206 \quad 0.00020 .000231$
0.003530 .0003420 .00048
0.0003610 .000350 .000413
0.0010510 .001020 .00117
0.0011750 .001140 .000868
$\begin{array}{llll}0.001051 & 0.00102 & 0.00117\end{array}$
$6.23 \mathrm{E}-05 \quad 6.05 \mathrm{E}-05 \quad 4.6 \mathrm{E}-05$
$0.0001120 .000108 \quad 0.000125$
$1.51 \mathrm{E}-05 \quad 1.46 \mathrm{E}-05 \quad 5.24 \mathrm{E}-05$
$\begin{array}{llll}9.75 \mathrm{E}-05 & 9.46 \mathrm{E}-05 & 0.000112\end{array}$
$8.48 \mathrm{E}-05 \quad 8.23 \mathrm{E}-05 \quad 5.04 \mathrm{E}-05$
0.0007560 .0007340 .000848
0.0001070 .0001040 .000121
$\begin{array}{lll}9.48 \mathrm{E}-05 & 9.2 \mathrm{E}-05 & 5.06 \mathrm{E}-05\end{array}$
$0.000120 .000116 \quad 7.11 \mathrm{E}-05$
$0.0001520 .000147 \quad 0.00017$
$\begin{array}{llll}0.000152 & 0.000147 & 0.00017\end{array}$
$0.0002040 .000198 \quad 0.00012$
0.0006650 .0006450 .000746
$\begin{array}{lll}0.000413 & 0.0004 & 0.00030\end{array}$

| 0.000413 | 0.0004 | 0.00030 |
| :--- | :--- | :--- | :--- |
| .000185 | 0.000179 | 0.00020 |

$\begin{array}{llll}0.000185 & 0.000179 & 0.000207 \\ 0.000167 & 0.000162 & 8.93 \mathrm{E}-05\end{array}$
$\begin{array}{llll}0.0000316 & 0.000306 & 0.000437\end{array}$
$\begin{array}{lll}0.000316 & 0.000306 & 0.000437 \\ 0.000142 & 0.000138 & 0.000291\end{array}$
$001420.000138 \quad 0.000291$
0.0001679
$0003790.00368 \quad 0.00023$
$0.000506 \quad 0.000490 .000567$
0004920.0004780 .00030
$8.09 \mathrm{E}-05 \quad 7.85 \mathrm{E}-050.000271$
002101
0.0011010 .0010680 .000813
0.0014770 .0014330 .00165
0.0029140 .0028270 .00350
$0.000544 \quad 0.000528 \quad 0.00033$
$\begin{array}{llll}0.000295 & 0.000287 & 0.000607\end{array}$
$8.52 \mathrm{E}-05 \quad 8.26 \mathrm{E}-05 \quad 5.06 \mathrm{E}-05$
0.0001080 .0001050 .000121
$\begin{array}{llll}5.42 \mathrm{E}-05 & 5.26 \mathrm{E}-05 & 3.47 \mathrm{E}-05\end{array}$
$\begin{array}{lll}5.42 \mathrm{E}-05 & 5.26 \mathrm{E}-05 & 3.47 \mathrm{E}-05 \\ 0.000639 & 0.00062 & 0.000769\end{array}$
$\begin{array}{llll}0.000121 & 0.000117 & 8.91 \mathrm{E}-05\end{array}$
$\begin{array}{lll}0.000108 & 0.000105 & 0.000121\end{array}$
.007
$\begin{array}{lll}77 \mathrm{E}-05 & 9.48 \mathrm{E}-05 & 5.22 \mathrm{E}-05 \\ 6 \mathrm{E} & 05 & 5.82 \mathrm{E}-05 \\ 6.73 \mathrm{E}\end{array}$
6E-05 $5.82 \mathrm{E}-05 \quad 6.73 \mathrm{E}-0$
$\begin{array}{llll}0.000355 & 0.000344 & 0.000427\end{array}$
$\begin{array}{lll}.7 \mathrm{E}-05 & 6.5 \mathrm{E}-05 & 4.95 \mathrm{E}-05\end{array}$

$6 \mathrm{E}-05$	$5.82 \mathrm{E}-05$	$6.73 \mathrm{E}-05$
000105	0.000102	0.00012

$0.0001050 .000102 \quad 0.00012$
$\begin{array}{lll}0.013382 & 0.012981 & 0.01501\end{array}$
0.0006470 .0006280 .000385
$0.0008210 .000796 \quad 0.00092$
0.0008210 .0007960 .0009
0.0003430 .0003330 .000183
0.0004860 .0004710 .000289
$\begin{array}{lll}0.001641 & 0.001592 & 0.001841\end{array}$
0.002470 .000240 .00015
0.0004920 .0004780 .00055
0.0004460 .0004320 .000238
0.0020720 .002010 .001793
0.0001830 .0001770 .000109
$3.7 \mathrm{E}-05 \quad 3.59 \mathrm{E}-05 \quad 4.15 \mathrm{E}-05$
$0.000148 \quad 0.0001430 .000166$
0.0001650 .000160 .00012
0.0001480 .0001430 .000166
$0.0002530 .000245 \quad 0.00035$
$\begin{array}{lll}0.000253 & 0.000245 & 0.0003 \\ 0.000259 & 0.000251 & 0.00029\end{array}$
$\begin{array}{lll}0.000259 & 0.000251 & 0.000296 \\ 0.000121 & 0.000117 & 7.2 \mathrm{E}-05\end{array}$
0.0001060 .0001030 .000112
$0.001390 .000135 \quad 7.42 \mathrm{E}-05$
0.0012410 .001204
$0.000138 \quad 0.000134 \quad 0.000155$
0.0001380 .0001340 .00015
$6.91 \mathrm{E}-05 \quad 6.71 \mathrm{E}-05 \quad 7.76 \mathrm{E}-05$

7.73 E . $7 . . \mathrm{E}-05 \mathrm{5}$ 5.71E-0

$6.91 \mathrm{E}-05$	$6.71 \mathrm{E}-05$	$7.76 \mathrm{E}-05$

0.0001180 .0001150 .00016
0.0001210 .0001170 .000139
0.0030420 .0029510 .003412
0.00340 .0032980 .002511
0.0030420 .0029510 .003412
$0.000394 \quad 0.0003820 .000442$
$0.00044 \quad 0.000427 \quad 0.000325$
0.0003940 .0003820 .000442
0.0001410 .0001370 .00010
0.0002530 .0002450 .000284
$3.42 \mathrm{E}-05 \quad 3.31 \mathrm{E}-050.000119$
0.0002210 .0002140 .00025
0.0002450 .0002380 .000146
0.0021880 .0021230 .002455
0.0003110 .0003020 .000349
0.0002740 .0002660 .000147
$0.000269 \quad 0.0002610 .00016$
0.0003410 .000331
$\begin{array}{llll}0.000341 & 0.000331 & 0.000383 \\ 0.000341 & 0.000331 & 0.000383\end{array}$
0.0002210 .0002140 .000134
0.0007210 .000699
.0004470 .000434
0.00020 .0001940 .000224
0.000342 0.000332 0.000474
0001540.0001490 .000316
.0001540 .0001490 .00031
0.0001820 .0001760 .00063
0.0004130 .00040 .00025
0.000550 .0005340 .000617
0.0005340 .0005180 .000329
$\begin{array}{llll}8.77 \mathrm{E}-05 & 8.51 \mathrm{E}-05 & 0.000294\end{array}$
0.0022240 .0021570 .002494
0.0011930 .0011570 .000881
0.0016010 .0015530 .001796
0.0031590 .0030640 .003802
0.000590 .0005720 .000358
0.000320 .0003110 .000658
$4.81 \mathrm{E}-05 \quad 4.67 \mathrm{E}-05 \quad 2.86 \mathrm{E}-05$
$6.1 \mathrm{E}-05 \quad 5.91 \mathrm{E}-05 \quad 6.84 \mathrm{E}-05$
3.06E-05 2.97E-05 1.96E-05
$0.000361 \quad 0.000350 .000434$
$\begin{array}{llll}6.82 \mathrm{E}-05 & 6.61 \mathrm{E}-05 & 5.03 \mathrm{E}-05\end{array}$
$\begin{array}{rrr}6.82 \mathrm{E}-05 & 6.61 \mathrm{E}-05 & 5.03 \mathrm{E}-05 \\ 6.1 \mathrm{E}-05 & 5.91 \mathrm{E}-05 & 6.84 \mathrm{E}-05\end{array}$
$\begin{array}{rrr}6.1 \mathrm{E}-05 & 5.91 \mathrm{E}-05 & 6.84 \mathrm{E}-05 \\ 5.52 \mathrm{E}-05 & 5.35 \mathrm{E}-05 & 2.95 \mathrm{E}-05\end{array}$
$\begin{array}{llr}5.52 \mathrm{E}-05 & 5.35 \mathrm{E}-05 & 2.95 \mathrm{E}-05 \\ 3.39 \mathrm{E}-05 & 3.29 \mathrm{E}-05 & 3.8 \mathrm{E}-05\end{array}$
$\begin{array}{rrr}3.39 \mathrm{E}-05 & 3.29 \mathrm{E}-05 & 3.8 \mathrm{E}-05 \\ 0.0002 & 0.000194 & 0.000241\end{array}$
$\begin{array}{rrr}0.0002 & 0.000194 & 0.000241 \\ 3.79 \mathrm{E}-05 & 3.67 \mathrm{E}-05 & 2.8 \mathrm{E}-05\end{array}$
$\begin{array}{lll}3.79 \mathrm{E}-05 & 3.67 \mathrm{E}-05 & 2.8 \mathrm{E}-05 \\ 3.39 \mathrm{E}-05 & 3.29 \mathrm{E}-05 & 3.8 \mathrm{E}-05\end{array}$
$\begin{array}{lll}3.39 \mathrm{E}-05 & 3.29 \mathrm{E}-05 & 3.8 \mathrm{E}-05 \\ 5.92 \mathrm{E} & 505 & 5.74 \mathrm{E}-05\end{array}$

$5.92 \mathrm{E}-05$	$5.74 \mathrm{E}-05$	$6.79 \mathrm{E}-05$

0.0133820 .0129810 .01501
0.000820 .0006810 .00041
0.0008890 .0008630 .000998
0.0008890 .0008630 .00099
0.0003720 .0003610 .000198
0.0005260 .0005110 .000313
0.0017790 .0017250 .001995
$0.000268 \quad 0.000260 .00017$
0.0005340 .0005180 .000599
0.0004830 .0004690 .000258
0.0022460 .0021790 .001943
0.0001980 .0001920 .000118
$2.07 \mathrm{E}-05 \quad 2 \mathrm{E}-05 \quad 2.32 \mathrm{E}-05$
$8.26 \mathrm{E}-05 \quad 8.01 \mathrm{E}-05 \quad 9.27 \mathrm{E}-05$
$9.23 \mathrm{E}-05 \quad 8.96 \mathrm{E}-05 \quad 6.82 \mathrm{E}-05$
$8.26 \mathrm{E}-05 \quad 8.01 \mathrm{E}-05 \quad 9.27 \mathrm{E}-05$
0.0001410 .0001370 .000196
$0.000144 \quad 0.000140 .000166$
$0.0001310 .000127 \quad 7.79 \mathrm{E}-05$
0.0001150 .0001110 .000121
0.0001510 .000146 8.04E-05
$0.0013430 .001303 \quad 0.00116$
0.000150 .0001450 .000168
$7.29 \mathrm{E}-05 \quad 7.07 \mathrm{E}-05 \quad 8.17 \mathrm{E}-05$
$\begin{array}{llll}7.29 E-05 & 7.07 \mathrm{E}-05 & 8.17 \mathrm{E}-0 \\ 0.000431 & 0.000418 & 0.000519\end{array}$
$\begin{array}{lrr}7.000431 & 0.000418 & 0.000519 \\ 8.14 \mathrm{E}-05 & 7.9 \mathrm{E}-05 & 6.01 \mathrm{E}-05\end{array}$
$\begin{array}{lrr}8.14 \mathrm{E}-05 & 7.9 \mathrm{E}-05 & 6.01 \mathrm{E}-05 \\ 7.29 \mathrm{E}-05 & 7.07 \mathrm{E}-05 & 8.17 \mathrm{E}-05\end{array}$

$7.29 \mathrm{E}-05$	$7.07 \mathrm{E}-05$	$8.17 \mathrm{E}-05$

0.0001250 .0001210 .000173
0.000270 .0001240
0.0032970 .0031980 .003698
0.0036850 .0035750 .002721
0.004270 .000414
0.0004270 .0004140 .000479
0.0004770 .0004630 .000352
0.0004270 .0004140 .00047
0.0001540 .0001490 .00011
0.0002750 .0002670 .00030
$3.72 \mathrm{E}-05 \quad 3.61 \mathrm{E}-05 \quad 0.00012$
$0.00024 \quad 0.0002330 .000276$
0.0002660 .0002580 .000158
0.0023720 .0023010 .0026
0.0003370 .0003270 .000378
0.0002970 .0002880 .000159
0.0002910 .0002830 .000173
0.0003690 .0003580 .00041
0.0003690 .0003580 .000414
$7.65 \mathrm{E}-05 \quad 7.42 \mathrm{E}-05 \quad 4.64 \mathrm{E}-05$
$0.000249 \quad 0.000242 \quad 0.00028$
$0.000155 \quad 0.00015 \quad 0.000114$
$6.92 \mathrm{E}-05 \quad 6.71 \mathrm{E}-05 \quad 7.76 \mathrm{E}-05$
$6.27 \mathrm{E}-05 \quad 6.08 \mathrm{E}-05 \quad 3.35 \mathrm{E}-05$
$\begin{array}{lll}6.200118 & 0.000115 & 0.00016\end{array}$
$\begin{array}{lll}0.000118 & 0.00015 & 0.000164 \\ 5.32 \mathrm{E}-05 & 5.16 \mathrm{E}-05 & 0.000109\end{array}$
$\begin{array}{llll}5.32 \mathrm{E}-05 & 5.16 \mathrm{E}-05 & 0.000109 \\ 7.36 \mathrm{E}-05 & 7.14 \mathrm{E}-05 & 0.000256\end{array}$
$\begin{array}{lll}7.36 \mathrm{E}-05 & 7.14 \mathrm{E}-05 & 0.000256\end{array}$
0.00022300000216
$0.0002230 .000216 \quad 0.0002$
0.0001850 .0001790 .000114
$3.03 \mathrm{E}-05 \quad 2.94 \mathrm{E}-050.000102$
0.000769
$0.000413 \quad 0.00040 .000305$
0.0005540 .0005370 .00062
0.0010920 .001060 .00131
0.0002040 .0001980 .000124
0.0001110 .0001070 .000228
0.0002870 .0002790 .000171
0.0003640 .0003530 .000409
0.0001830 .0001770 .000117
0.0021560 .0020920 .002596
0.0004070 .0003950 .000301
0.0003640 .0003530 .000409
$0.00033 \quad 0.000320 .000176$
0.0002020 .0001960 .000227
0.0011980 .0011620 .001442
0.0002260 .0002190 .000167
0.0002020 .0001960 .00022
0.0003540 .0003430 .000406
$0.013382 \quad 0.012981 \quad 0.01501$
$\begin{array}{llll}0.013382 & 0.012981 & 0.01501 \\ 0.000243 & 0.000235 & 0.000144\end{array}$
$\begin{array}{llll}0.000243 & 0.000235 & 0.000144 \\ 0.000308 & 0.000298 & 0.000345\end{array}$
$\begin{array}{llll}0.000308 & 0.000298 & 0.000345\end{array}$
$0.000129 \quad 0.000125 \quad 6.87 \mathrm{E}-05$
0.0001820 .000177 . 0.00010
0006150.000597
$0.0006150 .000597 \quad 0.0006$
$9.27 \mathrm{E}-05 \quad 8.99 \mathrm{E}-05 \quad 5.94 \mathrm{E}-05$
0.000167 0.001762 0.000207
0007770.000754
$0.000770 .000754 \quad 0.000672$
$6.85 \mathrm{E}-05 \quad 6.65 \mathrm{E}-05 \quad 4.07 \mathrm{E}-05$
0.0001260 .0001220 .00014
0.0005040 .0004890 .000565
0.0005630 .0005460 .000416
0.0005040 .0004890 .000565
0.0008620 .0008360 .001194
$0.0008810 .000855 \quad 0.00101$
$5.38 \mathrm{E}-05 \quad 5.22 \mathrm{E}-05 \quad 3.2 \mathrm{E}-0$
$\begin{array}{lll}4.71 \mathrm{E}-05 & 4.57 \mathrm{E}-05 & 4.97 \mathrm{E}-05\end{array}$
$6.18 \mathrm{E}-05 \quad 5.99 \mathrm{E}-05 \quad 3.3 \mathrm{E}-05$
0.0005520 .0005350 .000476
$6.15 \mathrm{E}-05 \quad 5.96 \mathrm{E}-05 \quad 6.9 \mathrm{E}-05$
0.0001540 .0001490 .000173
0.0009110 .0008840 .001096
0.0001720 .0001670 .000127
0.0001540 .0001490 .000173
0.0002630 .0002550 .000365
$\begin{array}{llll}0.000263 & 0.000255 & 0.000365 \\ 0.000269 & 0.000261 & 0.000308\end{array}$
$\begin{array}{llll}0.000269 & 0.000261 & 0.000308 \\ 0.00114 & 0.001106 & 0.001279\end{array}$
0.0012750 .0012360 .00094
$\begin{array}{llll}0.00114 & 0.001106 & 0.001279\end{array}$
0.001140 .0011060 .001279
$6.23 \mathrm{E}-05 \quad 6.05 \mathrm{E}-05 \quad 4.6 \mathrm{E}-05$
0.0001120 .0001080 .000125
1.51-5 1.4E-05 5.24E-05
.JUE-05 9.46E 05 5.20112
$\begin{array}{llll}9.2 \mathrm{E}-05 & 8.92 \mathrm{E}-05 & 5.46 \mathrm{E}-05\end{array}$
$0.000820 .000796 \quad 0.00092$
0.0001170 .0001130 .00013
0.000103 9.98E-05 5.49E-05
$0.000120 .000116 \quad 7.11 \mathrm{E}-05$
$0.0001520 .000147 \quad 0.00017$
$0.0001520 .000147 \quad 0.00017$
$0.0026 \quad 0.0025220 .002979$
0.0002790 .000270 .000313
0.002040 .0019790 .001257
$0.000372 \quad 0.0003610 .000417$
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
$4.65 \mathrm{E}-05 \quad 4.51 \mathrm{E}-05 \quad 5.21 \mathrm{E}-05$
$\begin{array}{lll}1.86 \mathrm{E}-05 & 1.8 \mathrm{E}-05 & 2.08 \mathrm{E}-05\end{array}$
0.001530 .0014840 .000943
0.0002530 .0002460 .000387
$0.000279 \quad 0.000270 .000313$
0.0001120 .0001080 .000125
0.006120 .0059370 .00377
0.0010140 .0009830 .001549
0.0005580 .0005410 .000625
0.0005580 .0005410 .000625
$\begin{array}{lrr}0.000619 & 0.0006 & 0.000368\end{array}$ $\begin{array}{lrr}0.000619 & 0.0006 & 0.000368 \\ 0.000127 & 0.000123 & 0.000194\end{array}$ $\begin{array}{lll}0.000127 & 0.000123 & 0.00019 \\ 3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05\end{array}$
$\begin{array}{llll}3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05 \\ 5.58 \mathrm{E}-05 & 5.41 \mathrm{E}-05 & 6.25 \mathrm{E}-05\end{array}$
$\begin{array}{lll}5.58 \mathrm{E}-05 & 5.41 \mathrm{E}-05 & 6.25 \mathrm{E}-05\end{array}$
0.001650 .0016010 .00098
0.0007 0.000679 0.000417
0.00070 .000674
0.0007650 .0007420 .00047
$0.000279 \quad 0.000270 .00031$
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-0$
0.00260 .0025220 .002979
$0.000279 \quad 0.000270 .000313$ 0.002040 .0019790 .001257 $\begin{array}{llll}0.000372 & 0.000361 & 0.000417\end{array}$ $7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
$4.65 \mathrm{E}-05 \quad 4.51 \mathrm{E}-05 \quad 5.21 \mathrm{E}-0$
$\begin{array}{lll}1.86 \mathrm{E}-05 & 1.8 \mathrm{E}-05 & 2.08 \mathrm{E}-05\end{array}$
0.001530 .0014840 .000943
0.0002530 .0002460 .000387
$0.000279 \quad 0.000270 .000313$ 0.0001120 .0001080 .000125 0.006120 .0059370 .003771
0.0010140 .0009830 .001549
$0.000558 \quad 0.0005410 .000625$
$0.000558 \quad 0.0005410 .000625$
$\begin{array}{lll}0.000558 & 0.000541 & 0.0000625 \\ 0.0000368\end{array}$
$\begin{array}{lrr}0.000619 & 0.0006 & 0.000368 \\ 0.000127 & 0.000123 & 0.000194\end{array}$
$\begin{array}{lll}0.000127 & 0.000123 & 0.000194 \\ 3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05\end{array}$
$\begin{array}{lll}3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05 \\ 5.58 \mathrm{E}-05 & 5.41 \mathrm{E}-05 & 6.25 \mathrm{E}-05\end{array}$
$\begin{array}{llll}5.58 \mathrm{E}-05 & 5.41 \mathrm{E}-05 & 6.25 \mathrm{E}-05 \\ 0.00165 & 0.001601 & 0.000981\end{array}$
0.003720 .0003610 .000417
$0.0007 \quad 0.0006790 .000963$
0.00070 .0006790 .000963
0.0007650 .0007420 .000471
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
$0.0523070 .050738 \quad 0.073315$
0.0461680 .0447830 .05178
0.0115920 .0112440 .007424
$\begin{array}{llll}0.002765 & 0.002682 & 0.009258\end{array}$
$\begin{array}{llll}0.026932 & 0.026124 & 0.030207\end{array}$
$\begin{array}{lll}1.03 \mathrm{E}-05 & 9.95 \mathrm{E}-06 & 6.23 \mathrm{E}-06\end{array}$
$\begin{array}{llll}3.34 \mathrm{E}-05 & 3.24 \mathrm{E}-05 & 3.75 \mathrm{E}-05\end{array}$
$2.08 \mathrm{E}-05 \quad 2.01 \mathrm{E}-05 \quad 1.53 \mathrm{E}-05$
$9.28 \mathrm{E}-06 \quad 9.01 \mathrm{E}-06 \quad 1.04 \mathrm{E}-05$
8.41E-06 $8.15 \mathrm{E}-06 \quad 4.49 \mathrm{E}-06$
$1.59 \mathrm{E}-05 \quad 1.54 \mathrm{E}-05 \quad 2.2 \mathrm{E}-05$
$7.13 \mathrm{E}-06 \quad 6.92 \mathrm{E}-06 \quad 1.46 \mathrm{E}-05$
$\begin{array}{llll}1.47 \mathrm{E}-05 & 1.43 \mathrm{E}-05 & 5.12 \mathrm{E}-05\end{array}$
$3.35 \mathrm{E}-05 \quad 3.25 \mathrm{E}-05 \quad 2.06 \mathrm{E}-05$
$\begin{array}{lll}4.46 \mathrm{E}-05 & 4.33 \mathrm{E}-05 & 5 \mathrm{E}-05\end{array}$
$2.48 \mathrm{E}-05 \quad 2.4 \mathrm{E}-05 \quad 1.53 \mathrm{E}-05$
$\begin{array}{lll}4.07 \mathrm{E}-06 & 3.95 \mathrm{E}-06 & 1.36 \mathrm{E}-05\end{array}$
$\begin{array}{lrr}0.000103 & 0.0001 & 0.000116 \\ 5.54 \mathrm{E}-05 & 5.37 \mathrm{E}-05 & 4.09 \mathrm{E}-05\end{array}$
$\begin{array}{lll}5.54 \mathrm{E}-05 & 5.37 \mathrm{E}-05 & 4.09 \mathrm{E}-0 \\ 7.43 \mathrm{E}-05 & 7.2 \mathrm{E}-05 & 8.33 \mathrm{E}-05\end{array}$

$7.43 \mathrm{E}-05$	$7.2 \mathrm{E}-05$	$8.33 \mathrm{E}-05$

$2.74 \mathrm{E}-05 \quad 2.65 \mathrm{E}-05 \quad 1.66 \mathrm{E}-05$
$\begin{array}{lll}2.74 \mathrm{E}-05 & 2.65 \mathrm{E}-05 & 1.66 \mathrm{E}-05\end{array}$
$1.49 \mathrm{E}-051.44 \mathrm{E}-05 \quad 3.05 \mathrm{E}-0$
0.000223 1.000216 0.00025
0.00024
0.00245
$0.0002230 .000216 \quad 0.0002$
$0.0001420 .000138 \quad 8.43 \mathrm{E}-05$
0.000180 .0001750 .000202
$\begin{array}{lll}9.03 \mathrm{E}-05 & 8.76 \mathrm{E}-05 & 5.79 \mathrm{E}-05\end{array}$
0.0010650 .0010330 .001282
0.0002010 .0001950 .000149
$0.00018 \quad 0.000175 \quad 0.000202$
0001630.000158 8.7E-0 1E-04 $9.7 \mathrm{E}-05 \quad 0.000112$
0.0005920 .0005740 .000712
$0.0001120 .0001088 .25 \mathrm{E}-05$
$\begin{array}{llll}1 \mathrm{E}-04 & 9.7 \mathrm{E}-05 & 0.000112\end{array}$
$\begin{array}{lll}0.000175 & 0.00017 & 0.0002\end{array}$
$0.013382 \quad 0.012981 \quad 0.0150$ $\begin{array}{lll}3.26 \mathrm{E}-05 & 3.16 \mathrm{E}-05 & 1.93 \mathrm{E}-05\end{array}$
$4.13 \mathrm{E}-05 \quad 4 \mathrm{E}-05 \quad 4.63 \mathrm{E}-05$
$4.13 \mathrm{E}-05 \quad 4 \mathrm{E}-05 \quad 4.63 \mathrm{E}-05$
$\begin{array}{lrr}4.13 \mathrm{E}-05 & 4 \mathrm{E}-05 & 4.63 \mathrm{E}-05 \\ 1.72 \mathrm{E}-05 & 1.67 \mathrm{E}-05 & 9.21 \mathrm{E}-06\end{array}$

$\begin{array}{lll}1.72 \mathrm{E}-05 & 1.67 \mathrm{E}-05 & 9.21 \mathrm{E}-06 \\ 2.44 \mathrm{E}-05 & 2.37 \mathrm{E}-05 & 1.45 \mathrm{E}-05\end{array}$ $\begin{array}{rrr}2.44 \mathrm{E}-05 & 2.37 \mathrm{E}-05 & 1.45 \mathrm{E}-05 \\ 8.25 \mathrm{E}-05 & 8 \mathrm{E}-05 & 9.26 \mathrm{E}-05\end{array}$ $\begin{array}{lrr}8.25 \mathrm{E}-05 & 8 \mathrm{E}-05 & 9.26 \mathrm{E}-05 \\ 1.24 \mathrm{E}-05 & 1.21 \mathrm{E}-05 & 7.96 \mathrm{E}-06\end{array}$ $\begin{array}{rrr}1.24 \mathrm{E}-05 & 1.21 \mathrm{E}-05 & 7.96 \mathrm{E}-06 \\ 2.48 \mathrm{E}-05 & 2.4 \mathrm{E}-05 & 2.78 \mathrm{E}-05\end{array}$ $\begin{array}{lll}2.48 \mathrm{E}-05 & 2.4 \mathrm{E}-05 & 2.78 \mathrm{E}-05\end{array}$ | $2.24 \mathrm{E}-05$ | $2.17 \mathrm{E}-05$ | $1.2 \mathrm{E}-05$ |
| :--- | :--- | :--- | 0.000104 $0.000101 \quad 9.01 \mathrm{E}-05$ 6.2E-05 6.01 E -05 $\quad 6.95 \mathrm{E}-05$ $6.2 \mathrm{E}-05$ 6.01E-05 $6.9 \mathrm{EE}-0$

$0.000248 \quad 0.000240 .000278$
0.0002770 .0002690 .000205
$0.000248 \quad 0.000240 .000278$
0.0004240 .0004110 .00058
$\begin{array}{llll}0.000433 & 0.00042 & 0.000497\end{array}$
$1.08 \mathrm{E}-05 \quad 1.05 \mathrm{E}-05 \quad 6.44 \mathrm{E}-06$
$9.47 \mathrm{E}-06 \quad 9.19 \mathrm{E}-06 \quad 9.99 \mathrm{E}-06$
$1.24 \mathrm{E}-05 \quad 1.21 \mathrm{E}-05 \quad 6.64 \mathrm{E}-06$
$0.0001110 .000108 \quad 9.58 \mathrm{E}-05$
$1.24 \mathrm{E}-05 \quad 1.2 \mathrm{E}-05 \quad 1.39 \mathrm{E}-05$
0.0001530 .0001480 .000172
0.0001710 .0001660 .000126
0.0001530 .0001480 .000172
$0.0004460 .000433 \quad 0.0005$
$0.0004460 .000433 \quad 0.0005$
$0.0004460 .000433 \quad 0.0005$
0.000780 .0007560 .000894
$\begin{array}{llll}7.03 E-05 & 6.82 E-05 & 0.000224\end{array}$
$1.25 \mathrm{E}-05 \quad 1.21 \mathrm{E}-05 \quad 9.21 \mathrm{E}-06$
$\begin{array}{lll}2.23 \mathrm{E}-05 & 2.16 \mathrm{E}-05 & 2.5 \mathrm{E}-05\end{array}$
3.01E-06 $\quad 2.92 \mathrm{E}-06 \quad 1.05 \mathrm{E}-05$
$\begin{array}{lll}1.95 \mathrm{E}-05 & 1.89 \mathrm{E}-05 & 2.23 \mathrm{E}-05\end{array}$ $\begin{array}{lll}1.95 E-05 & 1.89 \mathrm{E}-05 & 1.23 \mathrm{E}-05 \\ 0.000149 & 0.000144 & 0.000167\end{array}$ $\begin{array}{rrrr}0.000088 & 0.000854 & 0.001059\end{array}$ $\begin{array}{lll}0.000166 & 0.000161 & 0.000123\end{array}$ 0.0001490 .0001440 .000167 0.0001490 .000144 0.0002540 .0002470 .000352 $\begin{array}{rrr}0.00026 & 0.000252 & 0.000298 \\ 1.23 \mathrm{E}-05 & 1.2 \mathrm{E}-05 & 7.33 \mathrm{E}-06\end{array}$ $1.23 \mathrm{E}-051.2 \mathrm{E}-057.35$
0.00011 $0.000107 \quad 0.000123$
$\begin{array}{lll}1.56 \mathrm{E}-05 & 1.52 \mathrm{E}-05 & 1.75 \mathrm{E}-05 \\ 1.38 \mathrm{E}-05 & 1.34 \mathrm{E}-05 & 7.37 \mathrm{E}-06\end{array}$
$\begin{array}{lll}1.38 \mathrm{E}-05 & 1.34 \mathrm{E}-05 & 7.37 \mathrm{E}-06\end{array}$
$\begin{array}{lll}2.41 \mathrm{E}-05 & 2.34 \mathrm{E}-05 & 1.43 \mathrm{E}-05\end{array}$
$\begin{array}{lll}3.05 \mathrm{E}-05 & 2.96 \mathrm{E}-05 & 3.42 \mathrm{E}-05 \\ 3.05 \mathrm{E} & \end{array}$
$\begin{array}{lll}3.05 \mathrm{E}-05 & 2.96 \mathrm{E}-05 & 3.42 \mathrm{E}-05\end{array}$
$\begin{array}{lll}0.153895 & 0.149278 & 0.172612\end{array}$
$\begin{array}{llll}0.172039 & 0.166877 & 0.127029\end{array}$
0.1538950 .1492780 .172612
0.2690540 .2609820 .308351
0.00260 .0025220 .002979
0.0002790 .000270 .000313
0.002040 .0019790 .001257
$\begin{array}{llll}0.000372 & 0.000361 & 0.000417\end{array}$
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
$4.65 \mathrm{E}-05 \quad 4.51 \mathrm{E}-05 \quad 5.21 \mathrm{E}-05$
$\begin{array}{lll}1.86 \mathrm{E}-05 & 1.8 \mathrm{E}-05 & 2.08 \mathrm{E}-05\end{array}$
0.001530 .0014840 .000943
0.0002530 .0002460 .000387
$\begin{array}{llll}0.000279 & 0.00027 & 0.000313\end{array}$
$0.000112 \quad 0.0001080 .000125$
$\begin{array}{rrr}0.00612 & 0.005937 & 0.003771\end{array}$
$\begin{array}{lll}0.00612 & 0.005937 & 0.003771 \\ 0.000983 & 0.001549\end{array}$
$0.000558 \quad 0.0005410 .000625$
0.0005580 .0005410 .000625
0.0005580 .0005410 .000625
$0.000619 \quad 0.00060 .000368$
$\begin{array}{lll}0.000127 & 0.000123 & 0.000194 \\ 3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.175\end{array}$
$\begin{array}{lll}3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05 \\ 5.58 \mathrm{E}\end{array}$

$5.58 E-05$	$5.41 \mathrm{E}-05$	$6.25 \mathrm{E}-05$

0.001650 .0016010 .000981
0.0003720 .0003610 .000417
0.00070 .0006790 .000963
0.0007650 .0007420 .000471
$0.0002790 .00027 \quad 0.000313$
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
0.00260 .0025220 .002979
0.0002790 .000270 .000313
0.002040 .0019790 .001257
0.0003720 .0003610 .000417
$7.43 \mathrm{E}-05 \quad 7.21 \mathrm{E}-05 \quad 8.34 \mathrm{E}-05$
4.65E-05 4.51E-05 5.21E-05
$\begin{array}{lll}1.86 \mathrm{E}-05 & 1.8 \mathrm{E}-05 & 2.08 \mathrm{E}-05\end{array}$
0.001530 .0014840 .000943
0.0002530 .0002460 .000387
$\begin{array}{lll}0.000279 & 0.00027 & 0.000313\end{array}$
0.0001120 .0001080 .000125
0.006120 .0059370 .003771
0.0010140 .0009830 .001549
$\begin{array}{lll}0.000558 & 0.000541 & 0.000625\end{array}$
$0.000558 \quad 0.000541 \quad 0.000625$
0.000558 0.000541 0.000625
$0.000619 \quad 0.00060 .000368$
$\begin{array}{lll}0.000127 & 0.000123 & 0.000194 \\ 3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05\end{array}$
$\begin{array}{lll}3.72 \mathrm{E}-05 & 3.61 \mathrm{E}-05 & 4.17 \mathrm{E}-05 \\ 5.58 \mathrm{E}-05 & 5.41 \mathrm{E}-05 & 6.25 \mathrm{E}-05\end{array}$

$5.58 \mathrm{E}-05$	$5.41 \mathrm{E}-05$	$6.25 \mathrm{E}-05$

$\begin{array}{rrr}0.00165 & 0.001601 & 0.000981\end{array}$
0.0003720 .0003610 .000417
0.00070 .0006790 .000963
0.0007650 .0007420 .000471
$\begin{array}{lll}0.000279 & 0.00027 & 0.000313\end{array}$
$\begin{array}{llll}7.43 \mathrm{E}-05 & 7.21 \mathrm{E}-05 & 8.34 \mathrm{E}-05\end{array}$
$4.65 \mathrm{E}-05 \quad 4.51 \mathrm{E}-05 \quad 5.21 \mathrm{E}-05$
$1.86 \mathrm{E}-05 \quad 1.8 \mathrm{E}-05 \quad 2.08 \mathrm{E}-05$
$0.0001470 .0001428 .71 \mathrm{E}-05$
$8.18 \mathrm{E}-05 \quad 7.93 \mathrm{E}-05 \quad 0.000284$
0.0003720 .0003610 .000417
0.0003250 .0003150 .000372
$3.05 \mathrm{E}-05 \quad 2.96 \mathrm{E}-050.000102$
0.0001860 .000180 .000115
$0.000186 \quad 0.000180 .000115$
$0.000186 \quad 0.000180 .000208$
$0.00065 \quad 0.000630 .000745$
0.0001260 .0001230 .000177
$\begin{array}{lll}0.000112 & 0.000108 & 0.000125\end{array}$
$\begin{array}{lll}0.000112 & 0.000108 & 0.000125 \\ 0.000112 & 0.000108 & 0.000125\end{array}$
$\begin{array}{rrr}0.000112 & 0.000108 & 0.000125 \\ 1.76 \mathrm{E}-05 & 1.7 \mathrm{E}-05 & 5.6 \mathrm{E}-05\end{array}$
$\begin{array}{rrr}1.76 \mathrm{E}-05 & 1.7 \mathrm{E}-05 & 5.6 \mathrm{E}-05 \\ 8.8 \mathrm{E}-05 & 8.53 \mathrm{E}-05 & 5.23 \mathrm{E}-05\end{array}$
0.00051 .000495 0.000314
0.000168 . 000163 8.000 05
$\begin{array}{llll}0.000168 & 0.000163 & 8.99 \mathrm{E}-05 \\ 7.025\end{array}$
$7.4 \mathrm{E}-07$ 7.21E-05 $8.34 \mathrm{E}-0$
0.0003720 .0003610 .000417
0.0009750 .0009460 .001117
0.0003830 .0003710 .000236
0.0001390 .0001350 .000156
1.1899261 .1542271 .254158

 $\begin{array}{lllllllllllllllllllllllll}2035 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.002922 & 0.004264 & 7.78 \mathrm{E}-06 & 9.13 \mathrm{E}-05 & 8.4 \mathrm{E}-05 & 0.000265 & 2.32311 & 3.67 \mathrm{E}-05 & 7.37 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllllll}12210 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.01753 & 0.025585 & 4.67 \mathrm{E}-05 & 0.000548 & 0.000504 & 0.00159 & 13.93866 & 0.00022 & 4.42 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}4156 & 2.24658 & 4.041014 & 0.005599 & 0.074091 & 0.068163 & 0.180534 & 1673.661 & 0.02058 & 0.002802 & 0.010292 & 0.018513 & 2.56 \mathrm{E}-05 & 0.000339 & 0.000312 & 0.000827 & 7.667425 & 9.43 \mathrm{E}-05 & 1.28 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}66230 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.095088 & 0.138781 & 0.000253 & 0.00297 & 0.002732 & 0.008624 & 75.60668 & 0.001194 & 0.00024\end{array}$

$353231.3024581 .9009380 .00347 \quad 0.04068$ 0.037425 0.1181241035 .6160 .0163550 .0032860 .0507140 .0740170 .0001350 .0015840 .0014570 .00459940 .323940 .0006370 .000128
 $\begin{array}{lllllllllllllllllllllllllll}4504 & 2.24658 & 4.041014 & 0.005599 & 0.074091 & 0.068163 & 0.180534 & 1673.661 & 0.02058 & 0.002802 & 0.011154 & 0.020063 & 2.78 E-05 & 0.000368 & 0.000338 & 0.000896 & 8.309452 & 0.000102 & 1.39 E-05\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllll}6380 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.00916 & 0.013369 & 2.44 \mathrm{E}-05 & 0.000286 & 0.000263 & 0.000831 & 7.283264 & 0.000115 & 2.31 \mathrm{E}-05\end{array}$
 $28947603.0078060 .0797290 .002154 \quad 0.002210 .0019550 .073987324 .29690 .0084450 .0018519 .5977380 .2544090 .0068740 .0070530 .0062390 .2360871034 .8130 .0269470 .005906$ $\begin{array}{lllllllllllllllllllllll}1558 & 2.24658 & 4.041014 & 0.005599 & 0.074091 & 0.068163 & 0.180534 & 1673.661 & 0.02058 & 0.002802 & 0.003858 & 0.00694 & 9.62 \mathrm{E}-06 & 0.000127 & 0.000117 & 0.00031 & 2.874362 & 3.53 \mathrm{E}-05 & 4.81 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}24827 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.035645 & 0.052023 & 9.5 \mathrm{E}-05 & 0.001113 & 0.001024 & 0.003233 & 28.34194 & 0.000448 & 8.99 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}2207 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.003169 & 0.004625 & 8.44 \mathrm{E}-06 & 9.9 \mathrm{E}-05 & 9.1 \mathrm{E}-05 & 0.000287 & 2.519462 & 3.98 \mathrm{E}-05 & 7.99 \mathrm{E}-06\end{array}$

 $\begin{array}{llllllllllllllllllllllllllllllllllll}2037410 & 3.007806 & 0.079729 & 0.002154 & 0.00221 & 0.001955 & 0.073987 & 324.2969 & 0.008445 & 0.001851 & 6.755146 & 0.17906 & 0.004838 & 0.004964 & 0.004391 & 0.166164 & 728.3292 & 0.018966 & 0.004157\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrr}160 & 2.24658 & 4.041014 & 0.005599 & 0.074091 & 0.068163 & 0.180534 & 1673.661 & 0.02058 & 0.002802 & 0.000396 & 0.000713 & 9.87 \mathrm{E}-07 & 1.31 \mathrm{E}-05 & 1.2 \mathrm{E}-05 & 3.18 \mathrm{E}-05 & 0.295185 \\ 0 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

209	2.24658	4.041014	0.005599	0.074091	0.068163	0.180534	1673.661	0.02058	0.002802	0.000518	0.000931	$1.29 \mathrm{E}-06$	$1.71 \mathrm{E}-05$	$1.57 \mathrm{E}-05$	$4.16 \mathrm{E}-05$	0.385585
430	1.302458	1.900938	0.00347	0.04068	0.037425	0.118124	1035.616	0.016355	0.003286	0.004781	0.006978	$1.27 \mathrm{E}-05$	0.000149	0.000137	0.000434	3.801453
$3 \mathrm{E}-05$	$1.21 \mathrm{E}-07$															

 $\begin{array}{lllllllllllllllllllllllllllllllllllll}65640 & 3.007806 & 0.079729 & 0.002154 & 0.00221 & 0.001955 & 0.073987 & 324.2969 & 0.008445 & 0.001851 & 2.206966 & 0.058501 & 0.001581 & 0.001622 & 0.001435 & 0.054287 & 237.9516 & 0.006196 & 0.001358\end{array}$
 $\begin{array}{lllllllllllllllllllllllllll}1233 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.00177 & 0.002584 & 4.72 \mathrm{E}-06 & 5.53 \mathrm{E}-05 & 5.09 \mathrm{E}-05 & 0.000161 & 1.407565 & 2.22 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$

 $\begin{array}{llllllllllllllllllllll}2313 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.003321 & 0.004847 & 8.85 \mathrm{E}-06 & 0.000104 & 9.54 \mathrm{E}-05 & 0.000301 & 2.640469 & 4.17 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}1233 & 1.302458 & 1.900938 & 0.00347 & 0.04068 & 0.037425 & 0.118124 & 1035.616 & 0.016355 & 0.003286 & 0.00177 & 0.002584 & 4.72 \mathrm{E}-06 & 5.53 \mathrm{E}-05 & 5.09 \mathrm{E}-05 & 0.000161 & 1.407565 & 2.22 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$
 $\begin{array}{llllllllllllllllllllll}800 & 2.24658 & 4.041014 & 0.005599 & 0.074091 & 0.068163 & 0.180534 & 1673.661 & 0.02058 & 0.002802 & 0.001981 & 0.003564 & 4.94 \mathrm{E}-06 & 6.53 \mathrm{E}-05 & 6.01 \mathrm{E}-05 & 0.000159 & 1.475924 & 1.81 \mathrm{E}-05 & 2.47 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}\text { totals } & 49.45708 & 2.036828 & 0.036389 & 0.051613 & 0.046211 & 1.249178 & 5673.515 & 0.143606 & 0.031344\end{array}$

$====== \pm=1$ STUDY
 Construction Schedule 2025

((dd) suolss!ua ovoynon

咅资

$\stackrel{\rightharpoonup}{3}$

[^25]Units for Non-Greenhouse Gases Emission: Short Ton
Units for Greenhouse Gases (CO2, CH4, and N2O) Emission: Metric Ton

2025 Taxiway E C Concrete A Air Compresso	
25 Taxiway Eiconcreetet f Cond	
, ${ }^{\text {com }}$	
Taxiway E Concretef frub	
Taxiway EC Concrete !	fsli
Taxi	
Taxis	- Dozer
2025 Taxiway E D rainage - Dum	
Taxiway E. Drainage -	-xcavator
2025 Taxiway E D Drainage - Loader	
Taxiw	
${ }_{2025}^{2025}$ Taxiway E. Drainage - Other Gen	
2025 Taxiway E Excavatior Dozer	
${ }_{2025}^{2025}$ Taxiwy E Exxavavatio P Pickup Tr	
2025 Taxiway EEx Exavatior Dozer	
2025 Taxiwa E Excavatio Dump Truct	
${ }_{2025}^{2025}$ Taximay E Excavatior Prickup Truct	
${ }^{2025}$ T Taxiway EEExavatior Roller	
2025 Taxiway Eixcavatior Dozer	
2025 Taxiwa E E Fencing	Concrete
Taxiway E. Fencing	Dump Tuuk
2025 Taxiway E. Fencing	Other Genera
2025 Taxiway E. Fencing	Pickup Truck
2025 Taxiway E. Fencing	skid steer Load
2025 Taxiway E. Fencing	Tractors/Loader/Bachoe
2025 Taxiway EGrading	Dozer
25 Taxiway EG Grading	Grader
2025 Taxiway E G Grading	Roller
${ }^{2025} 5$ Taxiway E Hydro seec thdr	
2025 Taxiwa E Lighting	Loader
2025 Taxiway EL Lighting	Other General
255 Taxiway ELighting	Pickup Truck
2025 Taxiway EL Lighting	Skid stee Load
2025 Taxiway E Lighting Trators Loader/ 3 Back2025 Taxiwy EMarkings flated Truck	
2025 Taxiway E Markings othe	
2025 Taxway E Earkarkings Piekkup ruck	
25 Taxiway E. Soil Erosio Other General	
${ }^{2025}$ Taxiwey Esolil Erosio Pickup Truck	
25 Taxiway E Sosill forsio Tractors/Loader/B	
${ }^{2025}$ Taxiway Esubuase P Dozer	
225 Taxiway E. Subbase P Roller	
2025 Taxiway ETTopsoil Pl Dodorer	
2025 Building - Concrete P Concrete Ready	
2025 Building - Concretet fork Truck	
2025 Building - Concretet f Tool Tuck	
2025 Building - Concretef f Tractor Traier- Material Deil2025 cuidding - Constucti surey crew Trucks	
2025 suilding - Exterior W Workt Tuck	
2025 Building. Exterior W Man Lift	
2025 Building - Exterior W Tool 1 Tuck	
2025 Building - Interior B M Man Lift	
2025 Building - Interior B T Tool Truck	
2025 Building - Ro	
2025 suilding - Roofing	Failer-Mat

2025 Building. Seaur	\& Tool Tuck
bilding - Structural	140 Ton Crane
2025 Building- Structural	1 Fork
2025 Building. Structural	1 Tool Truch
2025 Building- Structural	1 Tractor Trailer-Steel Deliveries
2025 Building - Concrete fid	f Bachho
2025 Building. Concrete f	F Concrete Ready Mix
2025 Building- Concrete fi	ffork Tuk
2025 Building - Concrete f	frool
2025 Building - Concrete f	\& Tractor
2025 Building- Constructi	i Suney Crew Trucks
2025 Building- Constructi	i Tractor Traiers Temp fac.
2025 Building- Exterior W	Foork Truck
2025 suilding- Exterior W	W Man
2025 Building- Exterior W	WTool Tr
2025 Building- Exterior W	WTatt
2025 Building - Interior BL	sifork Truck
2025 Building - Interior BL	M Man Lift
2025 Building - Interior BL	LTool Truck
2025 Building - Interior BL	LTrator Tr
2025 Building - Roofing	High
2025 building - Roofing	Man Lift fascia Con
2025 Building- Roofing	Material Deliveries
2025 Building - Roofing	Tractor Trailer-Material Delivery
2025 Building- Securit \&	H High Lift
2025 Building- Security \&	Tool 7 Tuck
2025 building - Structura	140
2025 Building- Structural	1 Fork Tuck
2025 Building- Structural	1 Tool Truck
2025 Building- Structural	1 Tractor Tra
2025 Demolitiol A Sphalt De	
2025 Demolitioi A Aspalt De	dexcavator
2025 Demolitioi A Asphat De	ef Pickup Truck
2025 Access Roi A sphat Pl P	fi: Asphat Paver
2025 Access Roi A Aspalt Pl:	f. Uump Truck
2025 Access Roi A Aspalt Pl:	l: Other General Equipment
2025 Access Roi A Asphat Pl Pl	di. Pickup Truck
2025 Access Roi A Aspalt Pl	ARoller
2025 Access Roi A Aspalt Pl:	H. Skid stee Loader
2025 Access Roi Asphalt pl:	\|S Suraing Equipment (Grooving)
2025 Access Roi Clearing a	achain Saw
2025 Access Roi Clearing a	a Chipper/Sump Ginder
2025 Access foiclearing al	Pitckup Truck
2025 Access Roi Concrete f	fair Compressor
2025 Access Roi Concrete f	foncrete Saws
2025 Access Poi Concrete f	f Concrete Truck
2025 Access Roi Concrete f	Other General Equip
2025 Access Poi Concrete f	f Pickup Truck
2025 Access Roi Concrete f	fRubber Tired loa
2025 Access Roi Concrete f	f Slip form Paver
2025 Access poi Concrete f	FSurfacing Equipment (Grooving)
2025 Access Roic Curbing	Concrete Tuck
2025 Access Roi Curbing	Curb/Gutte
2025 Access Roi: Curbing	Other General Equip
2025 Access Roi Curbing	Pickup Truck
2025 Access Roi Orainage -	${ }^{\text {- Dozer }}$ - Dump
2025 Access Roi Orainage -	- Dump Truck
2225 Access Ro, Drainage -	- Excavator
2025 Access Roi Drainage-	- Loader
2025 Access Roi Drainage -	- Other General Eq
2025 Access Roi Drainage -	- Pickup Truck
2025 Access Roi Drainage -	- Roller
2025 Access Po. Drainage -	- Dump T T
2225 Access Ro. Orainage -	- Loader
2025 Access Po. Orainage -	- Other General Gqu
2025 Access Ro. Drainage -	- Pitapup Truck
2025 Access Roi Drainage -	
2025 Access Ro	Dozer
2025 Access 8 of: Exavatior	P Pickup Truck
2025 Access Poi Excavatior	r Roller
2025 Access Poi Excavatior	dozer
2025 Access Ro: Exavatio	r Dump Tuck (12Cy)
2025 Access Roi	
2025	Prickp Truck
2025 Access Roi Excavatior	
2025 Access Ro: Excavatior	rscraper
2025 Access Roi Excavatior	D Dozer
225 Access Ro: Fencing	
25 Access Po: Fencing	
2025 Access Roif Fencing	Other General Equipment
25 Access Roif Fencing	Pick

\section*{

\section*{

Suy Truck

\footnotetext{

	Security \& High Lit
	Security \& Tool Truck Structural 9oon crane
	struct
	Structural Concreete Truck
2025 Building- 5 st	Structural fork Truck
2025 Building- St	Structural Tol Truck
2025 Building. St	Structural Tractor Traile-Stee
2025 Building- 5 t	Structural Trow
2025 Building- stitster	Structura 1 Tuc
c	Concrete Paachoe
2025 Building- Cos	Concrete I Concrete Ready Mix Tucks
2025 Building- Cos	Concrete f Fork Tuck
2025 Building. C C	Concrete I Tool Truck
2025 Building	Concrete ITractor Trail
225 building.	Constucti Survey Cre
2025 Building - Co	Constuctit Tractor Tailers Temp Fac.
2025 Building.	Exerior M Fork Tuck
2025 Building.	Exterior M Man Lift
2025 Building.	Exterior W Tool Truck
2025 Building.	Exterior UTractor Trailer-
2025 Building.	Interior Bi Fork Tuck
2025 Building.	Interior BL Man lít
2025 Building.	Interior B S Tool Tric
2025 Building	Interior B LTractor Trailer-Material D
2025 Building	Roofing High Lift
2025 Building : R	Roofing Man Lit (fascia Constrution)
2025 Building- R R	Roofing Material Deliveries
2025 Building- R	Roofing Tractor Trailer-Mater
2025 building - 5	Security H High Lift
2025 building- - Se	Security \& Tool Truck
2025 Buididing. 5 st	Structura 40 Ton Crane
2025 Building- 5 st	Structural fork Tuck
2025 Building. St	Structural Tool Tuck
25 Building- 5 St	Structural Trator Trier-S
2025 Site Work C	Constructi Suree Crew Tuct
2025 Site Work C	Constuucti Tractor Trilers Te
2025 Ste Work sit	Site cleari Bulddozer
2025 Site Work si	Site Cleari Chain Saws
2025 Site Work Sit	Site Cleari Flat Bed or Dump
2025 Ste Work sit	Site Cleari Front loader
2022 site Work sil	Site cleari Grub the site
2022 ste Work si	Site Cleari Log Chipper
2025 Ste Work Sil	Site Cleari Mulcher
2025 Ste Work si	site Clear Ten Wheelers
2025 Ste Work sit	Site Cleari Tractor
2025 Ste Work si	Site Resto Bob Cat
2025 Ste Work sis	Site Resto Concrete R
2025 Ste Work Sil	Site Resto Tractor Trail
2025 Ste Work Sis	Site Resto Compasting Equipment
2025 Ste Work Sis	Site Resto Small Dozer
2025 Ste Work sis	site Resto Forktuck (Hoist)
2025 Site Work si	site Resto Roller
2025 Site Work sit	Site Resto. Seed Truck Spreader
2025 Site Work sit	Site Resto Tractor Traier-Materii

\qquad
\qquad

	\%

${ }_{5}^{5}$

5-m

6	2025 Building - : Concrete \	12	0	0	0	0.00855	0
6	2025 Building - Material N	12	0	0	0	0.01195	0
6	2025 Building - : Material N	12	0	0	0	0.03535	0
1	2025 Demolitior Material N	9	0	0	0	0.004479	0
1	2025 Demolitior Material N	9	0	0	0	0.0144	0
1	2025 Demolitior Soil Handli	9	0	0	0	0.01925	0
1	2025 Demolitior Unstabilizf	9	0	0	0	2.06E-08	0
2	2025 Access Roa Asphalt Dr	9	0	0	0	0	0.05
2	2025 Access Roa Asphalt Stı	9	0.1176	0.00735	0.001351	0.00805	0.003642
2	2025 Access Roc Concrete I	9	0	0	0	0.0416	0
2	2025 Access Roc Material N	9	0	0	0	0.0179	0
2	2025 Access Roc Material N	9	0	0	0	0.057	0
2	2025 Access Rǒ Soil Handli	9	0	0	0	0.01375	0
2	2025 Access Roà Unstabilize	9	0	0	0	1.47E-08	0
3	2025 Access RocAsphalt Dr	3	0	0	0	0	0.0334
3	2025 Access Roc Asphalt Stı	3	0.0021775	0.000136	2.50E-05	0.000149	6.75E-05
3	2025 Access Roc Concrete I	3	0	0	0	0.00077	0
3	2025 Access Roc Material N	3	0	0	0	0.00605	0
3	2025 Access Roc Material N	3	0	0	0	0.0183	0
3	2025 Access Ro^ Soil Handli	3	0	0	0	0.000255	0
3	2025 Access Roct Unstabilize	3	0	0	0	$9.08 \mathrm{E}-11$	0
4	2025 Open Park Asphalt Dr	12	0	0	0	0	0.37095
4	2025 Open Park Material N	12	0	0	0	0.01795	0
4	2025 Open Park Material N	12	0	0	0	0.05315	0
4	2025 Open Park Soil Handli	12	0	0	0	0.002831	0
4	2025 Open Park Unstabilizf	12	0	0	0	4.03E-09	0
5	2025 Fuel Tanks Asphalt Dr	9	0	0	0	0	0.09
5	2025 Fuel Tanks Asphalt Stı	9	1.14325	0.0714	0.01315	0.0783	0.0354
5	2025 Fuel Tanks Concrete I	9	0	0	0	0.4043	0
5	2025 Fuel Tanks Material N	9	0	0	0	0.0627	0
5	2025 Fuel Tanks Material N	9	0	0	0	0.2803	0
5	2025 Fuel Tanks Soil Handli	9	0	0	0	0.13375	0
5	2025 Fuel Tanks Unstabilizf	9	0	0	0	1.43E-07	0
6	2025 Building - : Concrete \	9	0	0	0	0.08555	0
6	2025 Building - :Material N	9	0	0	0	0.01345	0
6	2025 Building - :Material N	9	0	0	0	0.041	0
7	2025 Building - : Concrete \}	12	0	0	0	0.00855	0
7	2025 Building - : Material N	12	0	0	0	0.01195	0
7	2025 Building - :Material N	12	0	0	0	0.03535	0
8	2025 Site Work Material N	12	0	0	0	0.01195	0
8	2025 Site Work Material N	12	0	0	0	0.03565	0
8	2025 Site Work Soil Handli	12	0	0	0	0.002831	0
8	2025 Site Work Unstabilize	12	0	0	0	$4.03 \mathrm{E}-09$	0
Totals			3.2063275	0.200186	0.036863	3.207964	0.743609

2025 Totals

Year	Emission		NOx	SO2	PM10		PM2.5	voc	CO2	CH4	N2O	CO2e
2025	NonRoad	2.38967	7.270591		0.038327822	0.474959812	0.460711	0.491793	14584.13	--	--	
2025	OnRoad	49.79984	2.375674		0.038327822	0.058913601	0.052923	1.262791	6105.195	0.144624	0.031834	
2025	Fugitive	3.206328	0.200186		0.03686252	3.207964011	--	0.743609	--	--	--	
2025	total	55.39584	9.846452		0.113518164	3.741837424	0.513635	2.498193	20689.33	0.144624	0.031834	20701.81

ASSUMPTIONS
Emission factors were developed from the following models:
On-Road Vehicles: MOVES3.0.2, revised September 2021
Non-Road Equipment: MOVES3.0.2 September 2021
In addition to the overall project size dimensions (e.g., Length and width) provided by the user, an additional 10 ft length and 10 ft width is added to account for disturbance areas.
The number of employees is based on the higher of two methods: (1) number of equipment, and (2) multiply the project cost in million by 11.
The average employee travels 30 miles round-trip from home to construction site each day.
The average on-road material delivery round-trip distance per truck is 40 miles per day
For calculating fugitive, re-entrained PM emissions from on-road and non-road material delivery and handling equipment, a nominal VMT of 5 miles is used for each vehicle per day.
In deriving emission factors from NONROAD, the horsepower for each equipment represents the most popular in each equipment category.
The total length of each modeled scenario is used to define the number of days associated with vehicle/equipment evaporative emissions.
The choice of location and season are assumed to adequately represent differences in fuel characteristics affecting emissions.
Only two seasons (Summer and Winter) are used to represent all seasons.
14 U.S. Counties are used to represent all other counties in the U.S. (all other counties are mapped to the 14).
The default methods assume that all construction equipment use diesel as well as heavy-duty on-road vehicles, while passenger vehicles (including motorcycles) use gasoline.

Asphalt drying
Asphalt storage and batching
Concrete mixing/batching
Soil handling
Unstabilized land and wind erosion
Material movement (unpaved roads)
Material movemen (unped roads)

On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
rack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dump Truck
Dump Truck (12 cy)

Factors (g/mile)												
14	5	8	9	7	0	13	11	12	14	5	8	9
VOC	CO2	CH4	N2O	CO	NOx	SO2	PM10	PM2.5	Voc	CO2	CH	N2O
0.169144	1643.222	0.019684	0.002802	0.003487	0.006144	8.7E-06	0.000105	$9.64 \mathrm{E}-05$	0.000268	2.601101	3.12E-05	4.44E-06
0.104185	1018.132	0.015684	0.003286	0.032033	0.045509	8.6E-05	0.000856	0.000787	0.002629	25.69403	0.000396	.29E-05
0.104185	1018.132	0.015684	0.003286	0.002847	0.004045	7.65E-06	7.6E-05	$7 \mathrm{E}-05$	0.000234	2.283889	3.52E-05	-06
0.104185	1018.132	0.015684	0.003286	0.017084	0.024271	4.59E-05	0.000456	0.00042	0.001402	13.70333	0.000211	4.42E-05
0.069524	316.2227	0.007826	0.001731	2.66652	0.062793	0.001964	0.001966	0.001739	0.065014	295.7082	0.007318	0.001619
0.169144	1643.222	0.019684	0.002802	0.010091	0.017782	$2.52 \mathrm{E}-05$	0.000303	0.000279	0.000775	977	9.02E-05	05
0.104185	1018.132	0.015684	0.003286	0.092667	0.131653	0.000249	0.002475	0.002277	0.007606	74.3302	0.001145	0.00024
0.104185	1018.132	0.015684	0.003286	0.008237	0.011702	$2.21 \mathrm{E}-05$	0.00022	0.000202	0.000676	6.607004	0.000102	$2.13 \mathrm{E}-05$
0.104185	1018.132	0.01568	0.003	0.049	0.070	0.000133	0.00132	0.00121	0.00	9.6	00	28
0.069524	316.2227	0.007826	0.001731	1.848995	0.043541	0.001362	0.001363	0.001206	0.045081	205.0473	0.005074	0.001122
0.169144	1643.222	0.019684	0.002802	0.010936	0.019271	2.73E-05	0.000329	0.000302	0.00084	288	.77E-05	05
0.104185	1018.132	0.015684	0.003286	0.100433	0.142685	0.00027	0.002682	0.002468	0.008244	80.55899	0.001241	0.00026
0.104185	1018.132	0.015684	0.003286	0.008927	0.012682	2.4E-05	0.000238	0.000219	0.000733	7.1603	0.00011	$2.31 \mathrm{E}-05$
0.104185	1018.132	0.015684	0.003286	0.053565	0.076099	0.000144	0.001431	0.001316	0.004397	42.96517	0.000662	0.000139
0.069524	316.2227	0.007826	0.001731	9.099	0.214269	0.006703	0.006709	0.005935	0.221848	1009.049	0.024971	0.005523

Abstract

$\begin{array}{llllllllllll}169144 & 1643.222 & 0.019684 & 0.002802 & 0.003783 & 0.006666 & 9.44 \mathrm{E}-06 & 0.000114 & 0.000105 & 0.00029 & 2.822086 & 3.38 \mathrm{E}-05 \\ 4.81 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.034737 & 0.049351 & 9.33 \mathrm{E}-05 & 0.000928 & 0.000854 & 0.002851 & 27.86344 & 0.000429 & 8.99 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.003088 & 0.004387 & 8.29 \mathrm{E}-06 & 8.25 \mathrm{E}-05 & 7.59 \mathrm{E}-05 & 0.000253 & 2.476925 & 3.82 \mathrm{E}-05 & 7.99 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.018526 & 0.026321 & 4.98 \mathrm{E}-05 & 0.000495 & 0.000455 & 0.001521 & 14.86043 & 0.000229 & 4.8 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 3.050841 & 0.071843 & 0.002248 & 0.00225 & 0.00199 & 0.074384 & 338.3281 & 0.008373 & 0.001852\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.003236 & 0.004598 & 8.69 \mathrm{E}-06 & 8.64 \mathrm{E}-05 & 7.95 \mathrm{E}-05 & 0.000266 & 2.595889 & 4 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.001725 & 0.002451 & 4.63 \mathrm{E}-06 & 4.61 \mathrm{E}-05 & 4.24 \mathrm{E}-05 & 0.000142 & 1.383801 & 2.13 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 3.457592 & 0.081422 & 0.002547 & 0.00255 & 0.002255 & 0.084301 & 383.4354 & 0.009489 & 0.002099\end{array}$ $\begin{array}{lllllllllllll}0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.000388 & 0.000685 & 9.69 \mathrm{E}-07 & 1.17 \mathrm{E}-05 & 1.07 \mathrm{E}-05 & 2.98 \mathrm{E}-05 & 0.289816 & 3.47 \mathrm{E}-06 & 4.94 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.003236 & 0.004598 & 8.69 \mathrm{E}-06 & 8.64 \mathrm{E}-05 & 7.95 \mathrm{E}-05 & 0.000266 & 2.595889 & 4 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.001725 & 0.002451 & 4.63 \mathrm{E}-06 & 4.61 \mathrm{E}-05 & 4.24 \mathrm{E}-05 & 0.000142 & 1.383801 & 2.13 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllll}0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.000388 & 0.000685 & 9.69 E-07 & 1.17 \mathrm{E}-05 & 1.07 \mathrm{E}-05 & 2.98 \mathrm{E}-05 & 0.289816 & 3.47 \mathrm{E}-06 & 4.94 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.021155 & 0.030056 & 5.68 \mathrm{E}-05 & 0.000565 & 0.00052 & 0.001736 & 16.96924 & 0.000261 & 5.48 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 0.960934 & 0.022629 & 0.000708 & 0.000709 & 0.000627 & 0.023429 & 106.5644 & 0.002637 & 0.000583 \\ 0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.001712 & 0.003017 & 4.27 \mathrm{E}-06 & 5.14 \mathrm{E}-05 & 4.73 \mathrm{E}-05 & 0.000131 & 1.277003 & 1.53 \mathrm{E}-05 & 2.18 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.001712 & 0.003017 & 4.27 \mathrm{E}-06 & 5.14 \mathrm{E}-05 & 4.73 \mathrm{E}-05 & 0.000131 & 1.277003 & 1.53 \mathrm{E}-05 & 2.18 \mathrm{E}-06 \\ 0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.015725 & 0.022341 & 4.22 \mathrm{E}-05 & 0.00042 & 0.000386 & 0.001291 & 12.61358 & 0.000194 & 4.07 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.015725 & 0.022341 & 4.22 \mathrm{E}-05 & 0.00042 & 0.000386 & 0.001291 & 12.61358 & 0.000194 & 4.07 \mathrm{E}-05 \\ 0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.001398 & 0.001986 & 3.75 \mathrm{E}-06 & 3.73 \mathrm{E}-05 & 3.43 \mathrm{E}-05 & 0.000115 & 1.121182 & 1.73 \mathrm{E}-05 & 3.62 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.001398 & 0.001986 & 3.75 E-06 & 3.73 \mathrm{E}-05 & 3.43 \mathrm{E}-05 & 0.000115 & 1.121182 & 1.73 \mathrm{E}-05 \\ 3.62 \mathrm{E}-06\end{array}$ 0.06924316 .222700078260 .0017311 .565158 0.069 $\begin{array}{llllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.000291 & 0.000413 & 7.82 \mathrm{E}-07 & 7.77 \mathrm{E}-06 & 7.15 \mathrm{E}-06 & 2.39 \mathrm{E}-05 & 0.233439 & 3.6 \mathrm{E}-06 \\ 7.53 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 2.66 \mathrm{E}-05 & 3.78 \mathrm{E}-05 & 7.14 \mathrm{E}-08 & 7.1 \mathrm{E}-07 & 6.53 \mathrm{E}-07 & 2.18 \mathrm{E}-06 & 0.021324 & 3.28 \mathrm{E}-07 & 6.88 \mathrm{E}-08\end{array}$ $\begin{array}{llllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.000155 & 0.000221 & 4.17 \mathrm{E}-07 & 4.15 \mathrm{E}-06 & 3.82 \mathrm{E}-06 & 1.27 \mathrm{E}-05 & 0.124576 & 1.92 \mathrm{E}-06 \\ 4.02 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 0.527126 & 0.012413 & 0.000388 & 0.000389 & 0.000344 & 0.012852 & 58.45647 & 0.001447 & 0.00032\end{array}$ $\begin{array}{llllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.003236 & 0.004598 & 8.69 \mathrm{E}-06 & 8.64 \mathrm{E}-05 & 7.95 \mathrm{E}-05 & 0.000266 & 2.595889 & 4 \mathrm{E}-05 \\ 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.000288 & 0.000409 & 7.74 \mathrm{E}-07 & 7.7 \mathrm{E}-06 & 7.08 \mathrm{E}-06 & 2.37 \mathrm{E}-05 & 0.231195 & 3.56 \mathrm{E}-06 \\ 7.46 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.001725 & 0.002451 & 4.63 \mathrm{E}-06 & 4.61 \mathrm{E}-05 & 4.24 \mathrm{E}-05 & 0.000142 & 1.383801 & 2.13 \mathrm{E}-05 \\ 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 4.38893 & 0.103354 & 0.003233 & 0.003236 & 0.002863 & 0.107009 & 486.7176 & 0.012045 & 0.002664\end{array}$ $\begin{array}{lllllllllllll}0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.000291 & 0.000513 & 7.27 E-07 & 8.76 \mathrm{E}-06 & 8.06 \mathrm{E}-06 & 2.24 \mathrm{E}-05 & 0.217362 & 2.6 \mathrm{E}-06 & 3.71 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.016646 & 0.029335 & 4.15 \mathrm{E}-05 & 0.0005 & 0.00046 & 0.001278 & 12.41863 & 0.000149 & 2.12 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.152882 & 0.2172 & 0.000411 & 0.004083 & 0.003756 & 0.012549 & 122.6297 & 0.001889 & 0.000396\end{array}$ $\begin{array}{lllllllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.01359 & 0.019308 & 3.65 E-05 & 0.000363 & 0.000334 & 0.001115 & 10.90094 & 0.000168 & 3.52 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.081537 & 0.11584 & 0.000219 & 0.002178 & 0.002003 & 0.006693 & 65.40227 & 0.001007 & 0.000211\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 1.292165 & 0.030429 & 0.000952 & 0.000953 & 0.000843 & 0.031505 & 143.2968 & 0.003546 & 0.000784\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.032356 & 0.045968 & 8.69 \mathrm{E}-05 & 0.000864 & 0.000795 & 0.002656 & 25.95328 & 0.0004 & 8.38 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.017256 & 0.024516 & 4.63 \mathrm{E}-05 & 0.000461 & 0.000424 & 0.001416 & 13.84138 & 0.000213 & 4.47 \mathrm{E}-05\end{array}$ 0.069524316 .22270 .0078260 .0017313 .0029190 .0707150 .0022120 .0022140 .0019590 .073216333 .01360 .0082410 .001823 $\begin{array}{llllllllllllllllllllllllll}0.169144 & 1643.222 & 0.019684 & 0.002802 & 0.005827 & 0.010269 & 1.45 \mathrm{E}-05 & 0.000175 & 0.000161 & 0.000447 & 4.347244 & 5.21 \mathrm{E}-05 & 7.41 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.003236 & 0.004598 & 8.69 \mathrm{E}-06 & 8.64 \mathrm{E}-05 & 7.95 \mathrm{E}-05 & 0.000266 & 2.595889 & 4 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.104185 & 1018.132 & 0.015684 & 0.003286 & 0.001725 & 0.002451 & 4.63 \mathrm{E}-06 & 4.61 \mathrm{E}-05 & 4.24 \mathrm{E}-05 & 0.000142 & 1.383801 & 2.13 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\left.\begin{array}{llllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 8.563765 & 0.201665 & 0.006309 & 0.006315 & 0.005586 & 0.208798 & 949.6928 & 0.023502\end{array}\right) .005198$ $\begin{array}{llllllllllllllllllll}0.069524 & 316.2227 & 0.007826 & 0.001731 & 8.563765 & 0.201665 & 0.006309 & 0.006315 & 0.005586 & 0.208798 & 949.6928 & 0.023502 & 0.005198\end{array}$ 0.069524316 .22270 .0078260 .0017313 .493350 .0824050 .002578

Study Description
2026 Construction Schedule

EMISSIONSINVENTORY - DETAILS:

莉状

 ぶ
㐿

,

Abstract

岕

岗崖

耑

\qquad
\qquad

8 \qquad

Fuyitive Sources
Units for Non-Greenhouse Gases Emission: Short Ton


```
Soil handling
Unstabilized land and wind erosion
Material movement (unpaved roads)
Material movement (paved roads)
```

On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
Crack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)

$\begin{array}{lllllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000857 & 0.00149 & 2.14 \mathrm{E}-06 & 2.38 \mathrm{E}-05 & 2.19 \mathrm{E}-05 & 6.33 \mathrm{E}-05 & 0.639237 & 7.55 \mathrm{E}-06 & 1.11 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.007844 & 0.010883 & 2.11 \mathrm{E}-05 & 0.000181 & 0.000166 & 0.000585 & 6.320352 & 9.57 \mathrm{E}-05 & 2.07 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.000698 & 0.000968 & 1.88 \mathrm{E}-06 & 1.61 \mathrm{E}-05 & 1.48 \mathrm{E}-05 & 5.2 \mathrm{E}-05 & 0.562128 \\ 8.51 \mathrm{E}-06 & 1.84 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.004184 & 0.005806 & 1.13 \mathrm{E}-05 & 9.64 \mathrm{E}-05 & 8.87 \mathrm{E}-05 & 0.000312 & 3.371664 & 5.1 \mathrm{E}-05 \\ 1.11 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 2.770204 & 0.05266 & 0.002116 & 0.002083 & 0.001843 & 0.06007 & 318.543 & 0.007101 & 0.001724\end{array}$ $\begin{array}{lllllllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.00248 & 0.004312 & 6.18 \mathrm{E}-06 & 6.88 \mathrm{E}-05 & 6.33 \mathrm{E}-05 & 0.000183 & 1.850049 & 2.18 \mathrm{E}-05 & 3.21 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.022693 & 0.031487 & 6.12 \mathrm{E}-05 & 0.000523 & 0.000481 & 0.001692 & 18.28628 & 0.000277 & 6 \mathrm{E}-05\end{array}$ $0.0927161001 .8690 .0151670 .0032860 .0020170 .002799 \begin{array}{lllllllll}5.44 \mathrm{E}-06 & 4.65 \mathrm{E}-05 & 4.28 \mathrm{E}-05 & 0.00015 & 1.625644 & 2.46 \mathrm{E}-05 & 5.33 \mathrm{E}-06\end{array}$ $0.0927161001 .8690 .0151670 .0032860 .0121030 .016793 \quad 3.26 \mathrm{E}-050.0002790 .00025700 .0009039 .7527570 .000148$ $\begin{array}{llllllllllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 0.869981 & 0.016538 & 0.000665 & 0.000654 & 0.000579 & 0.018865 & 100.0383 & 0.00223 & 0.000541\end{array}$
 $0.0927161001 .8690 .0151670 .0032860 .0245940 .034124 \quad 6.63 \mathrm{E}-050.0005670 .0005210 .00183419 .81805 \quad 0.0003$

 $\begin{array}{llllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.013117 & 0.0182 & 3.54 \mathrm{E}-05 & 0.000302 & 0.000278 & 0.000978 & 10.57 & 0.00016 & 3.47 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 2140612 & 0.040692 & 0.001635 & 0.00161 & 0.001424 & 0.046418 & 246.1468 & 0.005487 & 0.001332\end{array}$ $\begin{array}{lllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 2.140612 & 0.040692 & .001635 & 0.00161 & 0.001424 & 0.046418 & 246.1468 & 0.005487 & 0.001332 \\ 0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000929 & 0.001614 & 2.31 \mathrm{E}-06 & 2.58 \mathrm{E}-05 & 2.37 \mathrm{E}-05 & 6.86 \mathrm{E}-05 & 0.692656 & 8.18 \mathrm{E}-06 & 1.2 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000929 & 0.001614 & 2.31 \mathrm{E}-06 & 2.58 \mathrm{E}-05 & 2.37 \mathrm{E}-05 & 6.86 \mathrm{E}-05 & 0.692656 & 8.18 \mathrm{E}-06 & 1.2 \mathrm{E}-06 \\ 0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.008507 & 0.011803 & 2.29 \mathrm{E}-05 & 0.000196 & 0.00018 & 0.000634 & 6.854871 & 0.000104 & 2.25 \mathrm{E}-05\end{array}$ | 0.092716 | 1001.869 | 0.015167 | 0.003286 | 0.008507 | 0.011803 | $2.29 \mathrm{E}-05$ | 0.000196 | 0.00018 | 0.000634 | 6.854871 | 0.000104 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.25 \mathrm{E}-05$ | | | | | | | | | | | |
| 0.092716 | 1001.869 | 0.015167 | 0.003286 | 0.000757 | 0.00105 | $2.04 \mathrm{E}-06$ | $1.74 \mathrm{E}-05$ | $1.6 \mathrm{E}-05$ | $5.64 \mathrm{E}-05$ | 0.609616 | $9.23 \mathrm{E}-06$ | 027161001.8690 .0151670 .00328600045360 .0062941 .22 E 050.000105 058187308.556800068780 .001677 .1773470 .1364370 .0054830 .0053980 .0047750 .15563682531590 .0183980 .00446 0.0 .008050 0.16006 1615.33 0.0151570 .002826

 $\begin{array}{llllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.000474 & 0.000658 & 1.28 \mathrm{E}-06 & 1.09 \mathrm{E}-05 & 1.01 \mathrm{E}-05 & 3.54 \mathrm{E}-05 & 0.382115 & 5.78 \mathrm{E}-06 & 1.25 \mathrm{E}-06\end{array}$
 $\begin{array}{llllllllllllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 0.83564 & 0.015885 & 0.000638 & 0.000628 & 0.000556 & 0.01812 & 96.08941 & 0.002142 & 0.00052\end{array}$ $\begin{array}{lllllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.001989 & 0.003457 & 4.96 \mathrm{E}-06 & 5.51 \mathrm{E}-05 & 5.07 \mathrm{E}-05 & 0.000147 & 1.483244 & 1.75 \mathrm{E}-05 & 2.57 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.018195 & 0.025246 & 4.91 \mathrm{E}-05 & 0.000419 & 0.000386 & 0.001357 & 14.66172 & 0.000222 & 4.81 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.001617 & 0.002244 & 4.36 \mathrm{E}-06 & 3.73 \mathrm{E}-05 & 3.43 \mathrm{E}-05 & 0.000121 & 1.303165 & 1.97 \mathrm{E}-05 & 4.27 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.009703 & 0.013463 & 2.62 \mathrm{E}-05 & 0.000224 & 0.000206 & 0.000724 & 7.818992 & 0.000118 & 2.56 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 2.039877 & 0.038777 & 0.001558 & 0.001534 & 0.001357 & 0.044233 & 234.5635 & 0.005229 & 0.001269\end{array}$
$\begin{array}{llllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.001952 & 0.002708 & 5.26 \mathrm{E}-06 & 4.5 \mathrm{E}-05 & 4.14 \mathrm{E}-05 & 0.000146 & 1.572634 & 2.38 \mathrm{E}-05 \\ 5.16 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 0.780694 & 0.014841 & 0.000596 & 0.000587 & 0.000519 & 0.016929 & 89.7712 & 0.002001 & 0.000486\end{array}$ $\begin{array}{llllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000668 & 0.001162 & 1.67 \mathrm{E}-06 & 1.85 \mathrm{E}-05 & 1.71 \mathrm{E}-05 & 4.94 \mathrm{E}-05 & 0.49857 & 5.89 \mathrm{E}-06 \\ 8.65 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.006106 & 0.008472 & 1.65 \mathrm{E}-05 & 0.000141 & 0.000129 & 0.000455 & 4.920002 & 7.45 \mathrm{E}-05 & 1.61 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.000543 & 0.000753 & 1.46 \mathrm{E}-06 & 1.25 \mathrm{E}-05 & 1.15 \mathrm{E}-05 & 4.05 \mathrm{E}-05 & 0.437333 & 6.62 \mathrm{E}-06 & 1.43 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.003256 & 0.004518 & 8.78 \mathrm{E}-06 & 7.5 \mathrm{E}-05 & 6.9 \mathrm{E}-05 & 0.000243 & 2.624001 & 3.97 \mathrm{E}-05 & 8.61 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 0.778404 & 0.014797 & 0.000595 & 0.000585 & 0.000518 & 0.016879 & 89.50794 & 0.001995 & 0.000484\end{array}$ $\begin{array}{llllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00317 & 0.004398 & 8.55 \mathrm{E}-06 & 7.3 \mathrm{E}-05 & 6.72 \mathrm{E}-05 & 0.000236 & 29.507425 & 3.87 \mathrm{E}-05\end{array} 8.38 \mathrm{E}-06$ $\begin{array}{llllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00169 & 0.002345 & 4.56 \mathrm{E}-06 & 3.89 \mathrm{E}-05 & 3.58 \mathrm{E}-05 & 0.000126 & 1.361697 & 2.06 \mathrm{E}-05\end{array} \mathrm{4}_{4} .47 \mathrm{E}-06$ $\begin{array}{lllllllllllll}0.002765 & 1001.869 & 0.015167 & 0.003286 & 0.00169 & 0.002345 & 4.56 \mathrm{E}-06 & 3.89 \mathrm{E}-05 & 3.58 \mathrm{E}-05 & 0.000126 & 1.361697 & 2.06 \mathrm{E}-05 & 4.4\end{array}$
 $\begin{array}{lllllllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00921 & 0.012779 & 2.48 \mathrm{E}-05 & 0.000212 & 0.000195 & 0.000687 & 7.421417 & 0.000112 & 2.43 \mathrm{E}-0.0\end{array}$
 $\begin{array}{lllllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000998 & 0.001735 & 2.49 \mathrm{E}-06 & 2.77 \mathrm{E}-05 & 2.55 \mathrm{E}-05 & 7.38 \mathrm{E}-05 & 0.744293 & 8.79 \mathrm{E}-06 & 1.29 \mathrm{E}-06\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.000811 & 0.001126 & 2.19 E-06 & 1.87 E-05 & 1.72 \mathrm{E}-05 & 6.05 \mathrm{E}-05 & 0.653791 & 9.14 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.92716 & 1001.869 & 0.015167 & 0.003286 & 0.004868 & 0.006755 & 1.31 \mathrm{E}-05 & 0.000112 & 0.000103 & 0.000363 & 3.922749 & 5.94 \mathrm{E}-05 & 1.29 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 1.968905 & 0.037428 & 0.001504 & 0.001481 & 0.00131 & 0.042694 & 226.4024 & 0.005047 & 0.001225\end{array}$ $\begin{array}{lllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00317 & 0.004398 & 8.55 \mathrm{E}-06 & 7.3 \mathrm{E}-05 & 6.72 \mathrm{E}-05 & 0.000236 & 2.554425 & 3.87 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.000282 & 0.000392 & 7.61 \mathrm{E}-07 & 6.5 \mathrm{E}-06 & 5.98 \mathrm{E}-06 & 2.11 \mathrm{E}-05 & 0.227502 & 3.44 \mathrm{E}-06 & 7.46 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00169 & 0.002345 & 4.56 \mathrm{E}-06 & 3.89 \mathrm{E}-05 & 3.58 \mathrm{E}-05 & 0.000126 & 1.361697 & 2.06 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 1.032531 & 0.019628 & 0.000789 & 0.000777 & 0.000687 & 0.02239 & 118.7297 & 0.002647 & 0.000643\end{array}$ $\begin{array}{lllllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000286 & 0.000498 & 7.14 \mathrm{E}-07 & 7.94 \mathrm{E}-06 & 7.31 \mathrm{E}-06 & 2.12 \mathrm{E}-05 & 0.213673 & 2.52 \mathrm{E}-06 & 3.71 \mathrm{E}-07\end{array}$ $0.160061615330 .0190750 .0028020 .0054550 .009483136 \mathrm{E}-050.00015100001390 .00040340 .068684$

 0160061615.33 0.018075 0.0028020 .3003820 .00664 $\begin{array}{llllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00317 & 0.004398 & 8.55 \mathrm{E}-06 & 7.3 \mathrm{E}-05 & 6.72 \mathrm{E}-05 & 0.000236 & 2.554425 & 3.87 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.092716 & 1001.869 & 0.015167 & 0.003286 & 0.00169 & 0.002345 & 4.56 \mathrm{E}-06 & 3.89 \mathrm{E}-05 & 3.58 \mathrm{E}-05 & 0.000126 & 1.361697 & 2.06 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllll}0.058187 & 308.5568 & 0.006878 & 0.00167 & 0.513923 & 0.009769 & 0.000393 & 0.000387 & 0.000342 & 0.011144 & 59.09545 & 0.001317 & 0.00032\end{array}$ $\begin{array}{llllllllllll}0.16006 & 1615.33 & 0.019075 & 0.002802 & 0.000382 & 0.000664 & 9.52 \mathrm{E}-07 & 1.06 \mathrm{E}-05 & 9.74 \mathrm{E}-06 & 2.82 \mathrm{E}-05 & 0.284897 & 3.36 \mathrm{E}-06 \\ 4.94 \mathrm{E}-07\end{array}$
$\begin{array}{llllllllllllllll}\text { totals } & 33.41468 & 1.046677 & 0.026093 & 0.031812 & 0.028386 & 0.740219 & 4045.751 & 0.088443 & 0.021368\end{array}$

Airport Construction Emissions Inventory Tool (ACEIT)
Version 1.0
Run Date \& Time: 12/27/2021 1:15:42 PM

STUDY

Study Name
Austin Airport

Study Description
2027 Construction Schedule

EMISSIONS INVENTORY - DETAILS:
Non-Road Sources
Units for Non-Greenhouse Gases Emission: Short Ton
Units for Greenhouse Gases (CO2, CH4, and N2O) Emission: Metric Ton
Scenario ItYea

Project	Constructi Equipment	MovesLoo Fuel
2027 Taxiways	Asphalt Pli Asphalt Paver	vers175 Diesel
2027 Taxiways	Asphalt Pli Dump Truck	Off-highw: Diesel
2027 Taxiways	Asphalt Pli Other General Equipment	Other Con: Diesel
2027 Taxiways	Asphalt Pli Pickup Truck	Off-highw:Diesel
2027 Taxiways	Asphalt Pli Roller	Rollers 100 Diesel
2027 Taxiways	Asphalt Pli Skid Steer Loader	Skid Steer Diesel
Taxiways	Asphalt Pli Surfacing Equipment (Grooving)	er Con: Diesel
2027 Taxiways	Clearing al Chain Saw	Other Con: Diesel
2027 Taxiways	Clearing al Chipper/Stump Grinder	Other Con: Diesel
2027 Taxiways	Clearing al Pickup Truck	Off-highw:Diesel
2027 Taxiways	Drainage - Dozer	Crawler
2027 Taxiways	Drainage - Dump Truck	Off-highw:Diesel
2027 Taxiways	Drainage - Excavator	ExcavatorsDiesel
2027 Taxiways	Drainage - Loader	Tractors/LD Diesel
2027 Taxiways	Drainage - Other General Equipment	Other Con:Diesel
2027 Taxiways	Drainage - Pickup Truck	Off-highw: Diesel
2027 Taxiways	Drainage - Roller	Rollers 100D
2027 Taxiways	Drainage - Dump Truck	Off-highw: Diesel
2027 Taxiways	Drainage - Loader	Tractors/LDiesel
2027 Taxiways	Drainage - Other General Equipment	Other Con: Diesel
2027 Taxiways	Drainage - Pickup Truck	Off-highw:Diesel
2027 Taxiways	Drainage - Tractors/Loader/Backhoe	Tractors/LDiesel
2027 Taxiways	Dust Contı Water Truck	Off-highw:Diesel
2027 Taxiways	Excavatior Dozer	Crawler Tr Diesel
2027 Taxiways	Excavatior Dump Truck (12 cy)	Off-highw:Diesel
2027 Taxiways	Excavatior Pickup Truck	Off-highw: Diesel
Taxiways	Excavatior Roller	Rollers 100 Diesel
2027 Taxiways	Excavatior Dozer	Crawler Tr Diesel
2027 Taxiways	Excavatior Dump Truck (12 cy)	Off-highw:Diesel
2027 Taxiways	Excavatior Excavator	Excavators Diesel
2027 Taxiways	Excavatior Pickup Truck	Off-highw:Diesel
2027 Taxiways	Excavatior Roller	Rollers100Diesel
2027 Taxiways	Excavatior Scraper	Scrapers6(Diesel
2027 Taxiways	Excavatior Dozer	Crawler Tr Diesel
2027 Taxiways	Fencing Concrete Truck	Off-highw: Diesel
2027 Taxiways	Fencing Dump Truck	Off-highw:Diesel
2027 Taxiways	Fencing Other General Equipment	Other Con: Diesel
2027 Taxiways	Fencing Pickup Truck	Off-highw: Diesel
2027 Taxiways	Fencing Skid Steer Loader	Skid Steer Dies
2027 Taxiways	Fencing Tractors/Loader/Backhoe	Tractors/LDiesel
2027 Taxiways	Grading Dozer	Crawler Tr Diesel
2027 Taxiways	Grading Grader	Graders30 Diesel
2027 Taxiways	Grading Roller	Rollers100Diesel
2027 Taxiways	Hydroseec Hydroseeder	er Con: Diesel
2027 Taxiways	Hydroseec Off-Road Truck	Off-highw:Diesel
2027 Taxiways	Lighting Dump Truck	Off-highw:Diesel
2027 Taxiways	Lighting Loader	Tractors/LDiesel
2027 Taxiways	Lighting Other General Equipment	Other Con: Diesel
2027 Taxiways	Lighting Pickup Truck	Off-highw: Diesel
2027 Taxiways	Lighting Skid Steer Loader	Skid Steer Diesel
2027 Taxiways	Lighting Tractors/Loader/Backhoe	Tractors/LDiesel
2027 Taxiways	Markings Flatbed Truck	Off-highw: Diesel
2027 Taxiways	Markings Other General Equipment	Other Con: Diesel
2027 Taxiways	Markings Pickup Truck	Off-highw:Diesel
2027 Taxiways	Soil Erosio Other General Equipment	Other Con: Diesel
2027 Taxiways	Soil Erosio Pickup Truck	Off-highw:Diesel

2027	Soil Erosio Tractors/Loader/Backhoe	Tractors/L Diesel	100	0.21	8	. 596653	1.90781	695.3356	0.00199	0.226892	0.220085	0.227907	0.000296	. 000353	. 128769	3.68E-07	4.2E-05	4.08E-05	4.22E-05
2027 Taxiways	Subbase P Dozer	Crawler Tr Diesel	175	0.59	15.71474	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.000125	0.000405	0.960097	$2.54 \mathrm{E}-06$	$2.93 \mathrm{E}-05$	$2.85 \mathrm{E}-05$	1.98E-05
2027 Taxiways	Subbase P Dump Truck (12 cy)	Off-highw: Diesel	600	0.59	110.5867	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001173	0.005473	23.16459	6.11E-05	0.000332	0.000322	0.000451
2027 Taxiways	Subbase P Pickup Truck	Off-highw: Diesel	600	0.59	15.71474	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000167	0.000778	3.291766	-06	4.72E-05	-05	05
2027 Taxiways	Subbase P R Roller	Rollers 100 Diesel	100	0.59	15.312	0.169521	0.962846	596.1149	0.001587	0.030751	0.029829	0.01505	0.000169	0.000959	0.593636	1.58E-06	3.06E-05	$2.97 \mathrm{E}-05$	$1.5 \mathrm{E}-05$
2027 Taxiways	Topsoil Pla Dozer	Crawler Tr Diesel	175	0.59	21.30933	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.000169	0.000549	1.301901	3.45E-06	3.98E-05	3.86E-05	$2.69 \mathrm{E}-05$
2027 Taxiways	Topsoil Pla Dump Truck	Off-highw: Diesel	600	. 59	21.30933	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000226	0.001055	4.463667	1.18E-05	6.4E-05	6.21E-05	8.69E-05
2027 Taxiways	Topsoil Pla Pickup Truck	Off-highw: Diesel	600	0.59	21.30933	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000226	0.001055	4.463667	1.18E-05	6.4E-05	$6.21 \mathrm{E}-05$	8.69E-05
2027 Taxiways	Asphalt PliAsphalt Paver	Pavers175 Diesel	175	0.59	31.8615	0.083087	0.250139	536.7939	0.001426	0.020077	0.019475	0.012961	0.000301	0.000907	1.946572	5.17E-06	$7.28 \mathrm{E}-05$	7.06E-05	4.7E-05
2027 Taxiways	Asphalt Pli Dump Truck	Off-highw: Diesel	600	0.59	114.7516	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001217	0.00568	24.03702	6.34E-05	0.000345	0.000334	68
2027 Taxiways	Asphalt Pliother General	Other Con Diesel	175	0.43	63.723	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.000887	0.002648	2.837132	7.71E-06	0.000216	0.000209	0.000153
2027 Taxiways	Asphalt Pli Pickup Truck	Off-highw: Diesel	600	0.59	31.8615	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000338	0.001577	6.67403	$1.76 \mathrm{E}-05$	9.57E-05	$9.29 \mathrm{E}-05$. 00013
2027 Taxiways	Asphalt Pli Roller	Rollers 100 Diesel	100	0.59	1.861	0.169521	0.962846	596.1149	0.001587	0.030751	0.029829	0.01505	0.000351	0.001995	235	3.29E-06	6.37E-05	6.18E-05	. 12
2027 Taxiways	Asphalt Pli Skid Steer Loader	Skid Steer Diesel	75	0.21	31.8615	2.567846	3.695226	694.5866	0.002114	0.33683	0.326726	0.479842	0.00142	0.002044	0.38422	1.17E-06	0.000186	0.000181	0.000265
2027 Taxiways	Asphalt PliSurfacing Equipment (Grooving)	Other Con Diesel	25	0.59	40.78272	1.489019	3.762538	595.1512	0.002188	0.170468	0.165354	0.351665	0.000987	0.002495	0.394641	$1.45 \mathrm{E}-06$	0.000113	0.00011	0.000233
2027 Taxiways	Clearing aıChain Saw	ther Con Diesel	11	0.7	. 8	2.461074	4.183513	593.7557	0.002183	0.238964	0.231795	0.837797	0.00173	0.00294	0.417288	1.53E-06	0.000168	0.000163	0.000589
2027 Taxiways	Clearing aıChipper/Stump	Other Con Diese	100	0.43	82.8	0.389666	1.180819	596.0566	0.00162	0.059454	0.05767	0.03496	0.001529	0.004634	2.339337	6.36E-06	0.000233	0.000226	0.000137
2027 Taxiways	Clearing aı Pickup Truck	Off-highw: Diesel	600	0.59	110.4	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001171	0.005464	23.12549	6.1E-05	0.000332	0.000322	0.00045
2027 Taxiways	Concrete FAir Compresso	Other Con Diesel	100	0.43	64	0.389666	1.180819	596.0566	0.00162	0.059454	0.05767	0.03496	0.001569	0.004755	2.400477	6.52E-06	0.000239	0.000232	0.000
2027 Taxiways	Concrete FConcrete Saws	Other Con Dies	40	0.59	84.964	0.281744	2.531371	595.8804	0.00157	0.021132	0.020498	0.092708	0.000623	0.005595	1.317081	3.47E-06	4.67E-05	4.53E-05	0.000205
2027 Taxiways	Concrete FConcrete Truck	Off-highw: Diesel	600	0.59	354.0167	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.003754	0.017522	74.15588	0.000196	0.001064	0.001032	0.001444
2027 Taxiways	Concrete FOther General Equipment	Other Con Diesel	175	0.43	16.928	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.002366	0.007061	7.565686	2.06E-05	0.000	. 00	. 00
2027 Taxiways	Concrete F Pickup Truck	Off-highw: Diesel	600	0.59	254.892	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.002703	0.012616	53.39224	0.000141	0.000766	0.000743	. 00104
2027 Taxiways	Concrete FRubber Tired Load	Tractors/L Diesel	175	0.59	4.964	0.655566	1.228319	626.0668	0.00179	0.151301	0.146762	0.164407	0.006339	0.011878	6.054137	$1.73 \mathrm{E}-05$	0.001463	0.001419	159
2027 Taxiways	Concrete FSlip Form Paver	Pavers 175 Dies	175	59	4.964	0.083087	0.250139	536.7939	0.001426	0.020077	0.019475	0.012961	0.000803	0.002419	5.190857	$1.38 \mathrm{E}-05$	0.000194	0.000188	0.000125
2027 Taxiways	Concrete FSurfacing Equipment (Grooving)	Other Con Dies	25	0.59	84.964	1.489019	3.762538	595.1512	0.002188	0.170468	0.165354	0.351665	0.002057	0.005198	0.822168	3.02E-06	0.000235	0.000228	0.000486
2027 Taxiways	Drainage - Dozer	Crawler Tr Diesel	175	0.59	229.952	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.001823	0.005923	14.049	$3.72 \mathrm{E}-05$	0.000429	0.000417	0.00029
2027 Taxiway	Drainage - Dump Truck	Off-highw: Diesel	600	0.59	9.952	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.002438	0.011381	48.16805	0.000127	0.000691	. 000	0.000938
2027 Taxiways	Drainage - Excavator	Excavators Diesel	175	59	229.952	0.059583	0.19603	536.8041	0.001417	0.013754	0.013341	0.009662	0.001559	0.00513	14.04913	3.71E-05	0.00036	0.000349	0.000253
2027 Taxiways	Drainage-Loader	Tractors/LDies	5	0.59	229.952	0.655566	1.228319	626.0668	0.00179	0.151301	0.146762	0.164407	0.017157	0.032147	16.3853	4.68E-05	0.00396	0.003841	0.004303
2027 Taxiways	Drainage - Other General Equipment	Other Con Diesel	175	0.43	229.952	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.003201	0.009555	10.23813	$2.78 \mathrm{E}-05$	0.000779	0.00	51
2027 Taxiways	Drainage - Pickup Truck	Off-highw: Diesel	600	0.59	952	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.002438	0.011381	48.16805	0.000127	0.000691	0.00067	0.000938
2027 Taxiways	Drainage - Roller	Rollers 100 Dies	100	59	229.952	0.169521	0.962846	596.1149	0.001587	0.030751	0.029829	0.01505	0.002535	0.0144	8.915089	$2.37 \mathrm{E}-05$	0.00046	0.000446	0.000225
2027 Taxiways	Drainage - Dump Truck	Off-highw: Diesel	600	0.59	127.7511	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001355	0.006323	26.76003	$7.06 \mathrm{E}-05$	0.000384	0.000372	. 000521
2027 Taxiways	Drainage - Loader	Tractors/L Diesel	175	0.59	127.7511	0.655566	1.228319	626.0668	0.00179	0.151301	0.146762	0.164407	0.009532	0.01786	9.102946	2.6E-05	0.0022	0.002134	. 0.00239
2027 Taxiways	Drainage - Other General	Other Con Dies	75	0.43	127.7511	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.001779	0.005308	5.687849	1.55E-05	0.000433	0.00042	0.000306
2027 Taxiways	Drainage - Pickup Truck	Off-highw: Diesel	600	0.59	127.7511	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001355	0.006323	26.76003	7.06E-05	0.000384	0.000372	0.000521
2027 Taxiways	Drainage - Tractors/Loader/	Tractors/L Diesel	100	0.21	127.7511	1.596653	1.90781	695.3356	0.00199	0.226892	0.220085	0.227907	0.004722	0.005642	2.056293	5.88E-06	0.000671	0.000651	0.000674
2027 Taxiways	Dust Contr Water Truck	Off-highw: Dies	600	0.59	2880	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.030539	0.142543	603.2737	0.001592	0.008653	0.0	749
2027 Taxiways	Excavatior Dozer	Crawler Tr Diesel	175	59	141.6067	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.001122	0.003647	8.651509	2.29E-05	0.000264	0.000257	0.000179
2027 Taxiways	Excavatior Dump Truck (12	Off-highw: Diesel	600	0.59	141.6067	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001502	0.007009	29.66235	7.83E-05	0.000425	0.000413	0.000578
2027 Taxiways	Excavatior Pickup Truck	Off-highw: Dies	00	59	141.6067	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.01045	0.001502	0.00700	29.66235	$7.83 \mathrm{E}-0$	0.000425	0.00041	0.000578
2027 Taxiways	Excavatior Roller	Rollers100 Diesel	100	0.59	65.35692	0.169521	0.962846	596.1149	0.001587	0.030751	0.029829	0.01505	0.000721	0.004093	2.533845	6.75E-06	0.000131	0.000127	6.4E-05
2027 Taxiways	Excavation Dozer	Crawler Tr Diesel	175	0.59	106.205	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.000842	0.002735	6.488632	$1.72 \mathrm{E}-05$	0.000198	0.000192	0.000134
2027 Taxiways	Excavatior Dump Truck	Off-highw: D	00	0.59	283.2133	0.027174	0.126836	536.7995	0.001416	0.007699	0.00746	0.01045	0.003003	0.01401	59.3247	0.00015	0.00085	0.00082	0.001155
2027 Taxiways	Excavatior Excavator	Excavators Diesel	175	0.59	84.964	0.059583	0.19603	536.8041	0.001417	0.013754	0.013341	0.009662	0.000576	0.001896	5.190956	$1.37 \mathrm{E}-05$	0.000133	0.000129	$9.34 \mathrm{E}-05$
2027 Taxiways	Excavatior Pickup Truck	Off-highw: Diesel	600	0.59	4.964	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000901	0.004205	17.79741	$4.7 \mathrm{E}-05$	0.000255	0.000248	0.000347
2027 Taxiways	Excavatior Roller	Rollers 100 Dies	100	0.59	4.96	0.16	0.962846	596.1149	0.0	0.0	0.029829	0.01505	0.000937	0.00532	3.29399	8.77E-06	0.0	0.000	5
2027 Taxiways	ExcavatiorScraper	Scrapers6(Diesel	600	0.59	106.205	0.131479	0.345281	536.7629	0.001454	0.025045	0.024294	0.023055	0.005449	0.01431	22.24525	6.03E-05	0.001038	0.001007	0.000955
2027 Taxiways	Excavatior Dozer	Crawler Tr Diesel	175	59	39.98306	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.000317	0.00103	2.442779	6.47E-06	7.47E-05	7.24E-05	5.04E-05
2027 Taxiways	Fencing Concrete Truck	Off-highw: Dies	600	0.59	79.73333	0.02	0.126836	536.7995	0.001416	0.007699	0.007	0.01045	0.000845	0.003	16.70	4.41E-05	0.0002	0.00023	325
2027 Taxiways	Fencing Dump Truck	Off-highw: Diesel	600	0.59	318.9333	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.003382	0.015785	66.80698	0.000176	0.000958	0.000929	0.001301
2027 Taxiways	Fencing Other General Equipment	Other Con Diesel	75	0.43	18.9333	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.00444	0.013252	14.19983	3.86E-05	. 00108	0.001048	0.000765
2027 Taxiways	Fencing Pickup Truck	Off-highw: Diesel	60	0.59	318	0.027174	0.126836	536	0.001416	0.007699	0.00	0.0	0.0	2578		0.00017	0.0	0.00	0.001301
2027 Taxiways	Fencing Skid Steer Loader	Skid Steer Diesel	75	0.21	318.9333	2.567846	3.695226	694.5866	0.002114	0.33683	0.326726	0.479842	0.014219	0.020461	3.846036	1.17E-05	0.001865	0.001809	0.002657
2027 Taxiways	Fencing Tractors/Loader/Backhoe	Tractors/L Diesel	100	21	318.9333	1.596653	1.90781	695.3356	0.00199	0.226892	0.220085	0.227907	0.011788	0.01	5.133578	$1.47 \mathrm{E}-05$	0.001675	0.001625	0.001683
2027 Taxiways	Grading Dozer	Crawler Tr Diesel	175	0.59	11	0.069639	0.226304	536.7988	0.001421	0.0	0.01	0.011077	0.000266	0.00086	2.0	5.42E-06	6.26E-05	6.07E-05	05
2027 Taxiways	Grading Grader	Graders30 Diesel	300	0.59	33.5011	0.032003	0.140888	536.7963	0.001419	0.008755	0.008492	0.011426	0.000209	0.000921	3.508717	9.27E-06	5.72E-05	5.55E-05	$7.47 \mathrm{E}-05$
2027 Taxiways	Grading Roller	Rollers 100 Diesel	100	. 59	011	0.169521	0.962846	596.1149	0.001587	0.030751	0.029829	0.01505	0.000369	0.002098	1.298816	3.46E-06	6.7E-05	05	3.28E-05
2027 Taxiways	Hydroseec Hydroseeder	Other Con Diesel	600	0.59	812	0.400345	0.911359	536.6653	0.001534	0.064774	0.06283	0.05672	0.004715	0.01073	6.32047	1.81E-05	0.00076	0.0007	0.000668
2027 Taxiways	Hydroseec Off-Road Truck	Off-highw: Diesel	600	0.59	30.1812	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.00032	0.001494	6.322057	$1.67 \mathrm{E}-05$	9.07E-05	8.8E-05	0.000123
2027 Taxiways	Lighting Dump Truck	Off-highw: Diesel	600	0.59	96.10667	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001019	0.004757	20.13147	5.31E-05	0.000289	0.00028	0.000392
2027 Taxiways	Lighting Loader	Tractors/L Diesel	175	0.59	96.10667	0.655566	1.228319	626.0668	0.00179	0.151301	0.146762	0.164407	0.007171	0.013436	6.848111	$1.96 \mathrm{E}-05$	0.001655	0.001605	0.001798
2027 Taxiways	Lighting Other General Equipment	Other Con Diesel	175	0.43	96.10667	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.001338	0.003993	4.278947	$1.16 \mathrm{E}-05$	0.000325	0.000316	0.00023
2027 Taxiways	Lighting Pickup Truck	Off-highw: Diesel	600	0.59	96.10667	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.001019	0.004757	20.13147	5.31E-05	0.000289	0.00028	0.000392
2027 Taxiways	Lighting Skid Steer Loader	Skid Steer Diesel	75	0.21	96.10667	2.567846	3.695226	694.5866	0.002114	0.33683	0.326726	0.479842	0.004285	0.006166	1.158956	3.53E-06	0.000562	0.000545	0.000801
2027 Taxiways	Lighting Tractors/Loader/Backhoe	Tractors/L Diesel	100	0.21	96.10667	1.596653	1.90781	695.3356	0.00199	0.226892	0.220085	0.227907	0.003552	0.004244	1.546941	$4.43 \mathrm{E}-06$	0.000505	0.00049	0.000507
2027 Taxiways	Markings Flatbed Truck	Off-highw: Diesel	600	0.59	524.8731	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.005566	0.025978	109.9452	0.00029	0.001577	0.00153	0.002141
2027 Taxiways	Markings Other General Equipment	Other Con Diesel	175	0.43	524.8731	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.007307	0.021809	23.36887	6.35E-05	0.001777	0.001724	0.001259
2027 Taxiways	Markings Pickup Truck	Off-highw: Diesel	600	0.59	524.8731	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.005566	0.025978	109.9452	0.00029	0.001577	0.00153	0.002141
2027 Taxiways	Soil Erosio Other General Equipment	Other Con Diesel	175	0.43	27.6	0.167834	0.50092	536.7479	0.001458	0.040823	0.039598	0.028906	0.000384	0.001147	1.228832	3.34E-06	$9.35 \mathrm{E}-05$	9.07E-05	6.62E-05
2027 Taxiways	Soil Erosio Pickup Truck	Off-highw: Diesel	600	0.59	55.2	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000585	0.002732	11.56275	3.05E-05	0.000166	0.000161	0.000225
2027 Taxiways	Soil Erosio Pumps	Other Con Diesel	11	0.43	27.6	2.461074	4.183513	593.7557	0.002183	0.238964	0.231795	0.837797	0.000354	0.000602	0.085445	$3.14 \mathrm{E}-07$	$3.44 \mathrm{E}-05$	3.34E-05	0.000121
2027 Taxiways	Soil Erosio Tractors/Loader/Backhoe	Tractors/L Diesel	100	. 21	27.6	1.596653	1.90781	695.3356	0.00199	0.226892	0.220085	0.227907	0.00102	0.001219	0.444252	1.27E-06	0.000145	0.00014	0.000146
2027 Taxiways	Subbase P Dozer	Crawler Tr Diesel	175	0.59	53.66147	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.000425	0.001382	3.278466	8.68E-06	0.0001	$9.72 \mathrm{E}-05$	6.77E-05
2027 Taxiways	Subbase P Dump Truck (12 cy)	Off-highw: Diesel	600	0.59	377.6178	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.004004	0.01869	79.09961	0.000209	0.001135	0.0011	0.00154
2027 Taxiways	Subbase P Pickup Truck	Off-highw: Diesel	600	0.59	53.66147	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000569	0.002656	11.24047	2.97E-05	0.000161	0.000156	0.000219
2027 Taxiways	Subbase P R Roller	Rollers 100 Diesel	100	0.59	52.28554	0.169521	0.962846	596.1149	0.001587	0.030751	0.029829	0.01505	0.000576	0.003274	2.027076	5.4E-06	0.000105	0.000101	5.12E-05
2027 Taxiways	Topsoil Pla Dozer	Crawler Tr Diesel	175	0.59	74.44667	0.069639	0.226304	536.7988	0.001421	0.016409	0.015917	0.011077	0.00059	0.001917	4.548345	1.2E-05	0.000139	0.000135	$9.39 \mathrm{E}-05$
2027 Taxiways	Topsoil Pla Dump Truck	Off-highw: Diesel	600	0.59	74.44667	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000789	0.003685	15.59435	4.11E-05	0.000224	0.000217	0.000304
2027 Taxiways	Topsoil Pla Pickup Truck	Off-highw: Diesel	600	0.59	74.44667	0.027174	0.126836	536.7995	0.001416	0.007699	0.007468	0.010454	0.000789	0.003685	15.59435	4.11E-05	0.000224	0.000217	0.000304
2027 Demolitio	IConcrete [Excavator with Bucket	Excavators Diesel	175	0.59	123.0507	0.059583	0.19603	536.8041	0.001417	0.013754	0.013341	0.009662	0.000834	0.002745	7.517897	1.99E-05	0.000193	0.000187	0.000135
2027 Demolitio	IConcrete [Excavator with Hoe Ram	Excavators Diesel	175	0.59	123.0507	0.059583	0.19603	536.8041	0.001417	0.013754	0.013341	0.009662	0.000834	0.002745	7.517897	1.99E-05	0.000193	0.000187	0.000135
2027 D	Concrete [Pickup Truck	Off-highw: Dies	600	0.59	246.1013	0.027174	0.12683	536.7995	0.001416	0.007699	0.007468	. 01	0.00261	0.012181	51.55085	0.000136	0.000739	0.0007	0.001004

$\begin{array}{lllllllllllllllll}0.21 & 8 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.000296 & 0.000353 & 0.128769 & 3.68 \mathrm{E}-07 & 4.2 \mathrm{E}-05 & 4.08 \mathrm{E}-05 & 4.22 \mathrm{E}-0 \mathrm{O}\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 110.5867 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001173 & 0.005473 & 23.16459 & 6.11 \mathrm{E}-05 & 0.000332 & 0.000322 & 0.000451\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 15.71474 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000167 & 0.000778 & 3.291766 & 8.69 \mathrm{E}-06 & 4.72 \mathrm{E}-05 & 4.58 \mathrm{E}-05 & 6.41 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 15.312 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000169 & 0.000959 & 0.593636 & 1.58 E-06 & 3.06 \mathrm{E}-05 & 2.97 \mathrm{E}-05 & 1.5 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllll}0.59 & 21.30933 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000226 & 0.001055 & 4.463667 & 1.18 \mathrm{E}-05 & 6.4 \mathrm{E}-05 & 6.21 \mathrm{E}-05 & 8.69 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllllllllllll}0.43 & 63.723 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000887 & 0.002648 & 2.837132 & 7.71 \mathrm{E}-06 & 0.000216 & 0.000209 & 0.000153\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 31.8615 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000338 & 0.001577 & 6.67403 & 1.76 \mathrm{E}-05 & 9.57 \mathrm{E}-05 & 9.29 \mathrm{E}-05 & 0.00013\end{array}$ | 0.59 | 31.8615 | 0.169521 | 0.962846 | 596.1149 | 0.001587 | 0.030751 | 0.029829 | 0.01505 | 0.000351 | 0.001995 | 1.23525 | $3.29 \mathrm{E}-06$ | $6.37 \mathrm{E}-05$ | $6.18 \mathrm{E}-05$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $3.12 \mathrm{E}-05$ | | | | | | | | | | | | | |

 $\begin{array}{lllllllllllllllllllllllllll}0.43 & 82.8 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.001529 & 0.004634 & 2.339337 & 6.36 \mathrm{E}-06 & 0.000233 & 0.000226 & 0.000137\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 110.4 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001171 & 0.005464 & 23.12549 & 6.1 \mathrm{E}-05 & 0.000332 & 0.000322 & 0.00045\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 84.964 & 0.281744 & 2.531371 & 595.8804 & 0.00157 & 0.021132 & 0.020498 & 0.092708 & 0.000623 & 0.005595 & 1.317081 & 3.47 \mathrm{E}-06 & 4.67 \mathrm{E}-05 & 4.53 \mathrm{E}-05 & 0.000205\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 354.0167 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.003754 & 0.017522 & 74.15588 & 0.000196 & 0.001064 & 0.001032 & 0.001444\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}0.59 & 84.964 & 0.083087 & 0.250139 & 536.7939 & 0.001426 & 0.020077 & 0.019475 & 0.012961 & 0.000803 & 0.002419 & 5.190857 & 1.38 \mathrm{E}-05 & 0.000194 & 0.000188 & 0.000125\end{array}$

 $\begin{array}{llllllllllllllllllll}0.59 & 229.952 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.017157 & 0.032147 & 16.3853 & 4.68 \mathrm{E}-05 & 0.00396 & 0.003841 & 0.004303\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0.43 & 229.952 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.003201 & 0.009555 & 10.23813 & 2.78 \mathrm{E}-05 & 0.000779 & 0.000755 & 0.000551\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.59 & 229.952 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.002438 & 0.011381 & 48.16805 & 0.000127 & 0.000691 & 0.00067 & 0.000938\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 229.952 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.002535 & 0.0144 & 8.915089 & 2.37 \mathrm{E}-05 & 0.00046 & 0.000446 & 0.000225\end{array}$
 $\begin{array}{lllllllllllllllll}0.59 & 127.7511 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.009532 & 0.01786 & 9.102946 & 2.6 \mathrm{E}-05 & 0.0022 & 0.002134 & 0.0023\end{array}$
 0.21127 .75111 .5966531 .907816953356 $\begin{array}{lllllllllllllllllll}0.59 & 2880 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.030539 & 0.142543 & 603.2737 & 0.001592 & 0.008653 & 0.008393 & 0.011749\end{array}$
 $\begin{array}{lllllllllllllllllllll}0.59 & 141.6067 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001502 & 0.007009 & 29.66235 & 7.83 \mathrm{E}-05 & 0.000425 & 0.000413 & 0.000578\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 65.35692 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000721 & 0.004093 & 2.533845 & 6.75 \mathrm{E}-06 & 0.000131 & 0.000127 & 6.4 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0.59 & 84.964 & 0.059583 & 0.19603 & 536.8041 & 0.001417 & 0.013754 & 0.013341 & 0.009662 & 0.000576 & 0.001896 & 5.190956 & 1.37 \mathrm{E}-05 & 0.000133 & 0.000129 & 9.34 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 84.964 & 0.059583 \\ 0.59 & 84.964 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000901 & 0.004205 & 17.79741 & 4.7 \mathrm{E}-05 & 0.000255 & 0.000248 & 0.000347\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.59 & 84.964 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000937 & 0.00532 & 3.293999 & 8.77 E-06 & 0.00017 & 0.000165 & 8.32 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllllllllllll}0.59 & 318.9333 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.003382 & 0.015785 & 66.80698 & 0.000176 & 0.000958 & 0.000929 & 0.001301\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}0.21 & 318.9333 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.014219 & 0.020461 & 3.846036 & 1.17 \mathrm{E}-05 & 0.001865 & 0.001809 & 0.00265\end{array}$
 $\begin{array}{llllllllllllllll} \\ 0.59 & 33.5011 & 0.032003 & 0.140888 & 536.7963 & 0.001419 & 0.008755 & 0.008492 & 0.011426 & 0.000209 & 0.000921 & 3.508717 & 9.27 E-06 & 6.26 E-05 & 6.07 \mathrm{E}-05 & 4.22 \mathrm{E}-0.0\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 33.5011 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000369 & 0.002098 & 1.298816 & 3.46 \mathrm{E}-06 & 6.7 \mathrm{E}-05 & 6.5 \mathrm{E}-05 & 3.28 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.59 & 30.1812 & 0.400345 & 0.911359 & 536.6653 & 0.001534 & 0.064774 & 0.062831 & 0.056727 & 0.004715 & 0.010733 & 6.320477 & 1.81 \mathrm{E}-05 & 0.000763 & 0.00074 & 0.000668\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 30.1812 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.00032 & 0.001494 & 6.322057 & 1.67 \mathrm{E}-05 & 9.07 \mathrm{E}-05 & 8.8 \mathrm{E}-05 & 0.000123\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.59 & 96.10667 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001019 & 0.004757 & 20.13147 & 5.31 \mathrm{E}-05 & 0.000289 & 0.00028 & 0.000392\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 96.10667 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.007171 & 0.013436 & 6.848111 & 1.96 \mathrm{E}-05 & 0.001655 & 0.001605 & 0.001798\end{array}$
 $\begin{array}{llllllllllllllllllllll}0.21 & 96.10667 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.004285 & 0.006166 & 1.158956 & 3.53 \mathrm{E}-06 & 0.000562 & 0.000545 & 0.000801\end{array}$ $\begin{array}{llllllllllllllllllllll}0.21 & 96.10667 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.003552 & 0.004244 & 1.546941 & 4.43 \mathrm{E}-06 & 0.000505 & 0.00049 & 0.000507\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 524.8731 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.005566 & 0.025978 & 109.9452 & 0.00029 & 0.001577 & 0.00153 & 0.002141\end{array}$

 $\begin{array}{llllllllllllllllllllllllllllll}0.59 & 55.2 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000585 & 0.002732 & 11.56275 & 3.05 E-05 & 0.000166 & 0.000161 & 0.000225\end{array}$
 $\begin{array}{llllllllllllllllllll}0.59 & 53.66147 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 0.000425 & 0.001382 & 3.278466 & 8.68 \mathrm{E}-06 & 0.0001 & 9.72 \mathrm{E}-05 & 6.77 \mathrm{E}-0\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 377.6178 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.004004 & 0.01869 & 79.09961 & 0.000209 & 0.001135 & 0.0011 & 0.00154\end{array}$ 0.5 0.59

 $\begin{array}{llllllllllllllllllllll}0.59 & 246.1013 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.00261 & 0.012181 & 51.55085 & 0.000136 & 0.000739 & 0.000717 & 0.001004\end{array}$

Apron (GAAsphalt PliAsphalt Paver	Pavers 175 Diesel
2027 Apron (GA Asphalt Pli Dump Truck	Off-highw: Diesel
2027 Apron (GAAsphalt Pli Other General Equipment	Other Con Diesel
2027 Apron (GA Asphalt Pli Pickup Truck	Off-highw: Diesel
2027 Apron (GA Asphalt Pli Roller	Rollers100 Diesel
2027 Apron (GA Asphalt Pl: Skid Steer Loader	Skid Steer Diesel
2027 Apron (GA Asphalt Pli Surfacing Equipment (Grooving)	Other Con Diesel
2027 Apron (GAClearing aıChain Saw	Other Con Diesel
2027 Apron (GA Clearing aıChipper/Stump Grinder	Other Con Diesel
2027 Apron (GAClearing aı Pickup Truck	Off-highwi Diesel
027 Apron (GAConcrete FAir Compressor	Other Con Diesel
2027 Apron (GA Concrete FConcrete Saws	Other Con Diesel
2027 Apron (GA Concrete FConcrete Truck	Off-highwi Diesel
2027 Apron (GA Concrete F Other General Equipment	Other Con Dies
2027 Apron (GA Concrete FPickup Truck	Off-highw: Diesel
2027 Apron (GA Concrete F Rubber Tired Loader	Tractors/L Diesel
2027 Apron (GA Concrete FSlip Form Paver	Pavers 175 Die
2027 Apron (GA Concrete F Surfacing Equipment (Grooving)	Other Con Diesel
2027 Apron (GA Drainage - Dozer	Crawler Tr Diesel
2027 Apron (GA Drainage - Dump Truck	Off-highw: Diesel
2027 Apron (GA Drainage - Excavator	Excavators Diesel
2027 Apron (GA Drainage - Loader	Tractors/L Diesel
2027 Apron (GA Drainage - Other General Equipment	Other Con Dies
2027 Apron (GA Drainage - Pickup Truck	Off-highw: Diesel
2027 Apron (GA Drainage - Roller	Rollers100 Diesel
2027 Apron (GA Drainage - Dump Truck	Off-highw: Diesel
2027 Apron (GA Drainage - Loader	Tractors/L Diesel
2027 Apron (GA Drainage - Other General Equipment	Other Con Diesel
2027 Apron (GA Drainage - Pickup Truck	Off-highwi Diesel
2027 Apron (GA Drainage - Tractors/Loader/Backhoe	Tractors/L Diesel
2027 Apron (GA Dust Contr Water Truck	Off-highw: Diesel
2027 Apron (GA Excavatior Dozer	Crawler Tr Diesel
2027 Apron (GA Excavatior Dump Truck (12 cy)	Off-highw: Diesel
2027 Apron (GA Excavatior Pickup Truck	Off-highw: Diesel
2027 Apron (GAExcavatior Roller	Rollers100 Diesel
2027 Apron (GA Excavatior Dozer	Crawler Tr Diesel
2027 Apron (GA Excavatior Dump Truck (12 cy)	Off-highw: Diesel
2027 Apron (GAExcavatior Excavator	Excavators Diesel
2027 Apron (GA Excavatior Pickup Truck	Off-highw: Diesel
Apron (GA Excavatior Roller	Rollers100 Diesel
2027 Apron (GAExcavatior Scraper	Scrapers6(Diesel
2027 Apron (GA Excavatior Dozer	Crawler Tr Diesel
Apron (GAFencing Concrete Truck	Off-highw: Diesel
2027 Apron (GAFencing Dump Truck	Off-highw: Diesel
2027 Apron (GAFencing Other General Equipment	Other Con Diesel
027 Apron (GAFencing Pickup Truck	Off-highw: Diesel
2027 Apron (GA Fencing Skid Steer Loader	Skid Steer Diesel
2027 Apron (GA Fencing Tractors/Loader/Backhoe	Tractors/LD Diesel
2027 Apron (GA Grading Dozer	Crawler Tr Diesel
2027 Apron (GA Grading Grader	Graders30 Diesel
2027 Apron (GA Grading Roller	Rollers100 Diesel
2027 Apron (GA Hydroseec Hydroseeder	Other Con Diesel
2027 Apron (GA Hydroseec Off-Road Truck	Off-highw: Diesel
2027 Apron (GA Lighting Dump Truck	Off-highw: Diesel
2027 Apron (GALighting Loader	Tractors/L Diesel
2027 Apron (GA Lighting Other General Equipment	Other Con Diesel
Apron (GALighting Pickup Truck	Off-highwi Diesel
2027 Apron (GA Lighting Skid Steer Loader	Skid Steer Diesel
2027 Apron (GALighting Tractors/Loader/Backhoe	Tractors/LD Diesel
2027 Apron (GAMarkings Flatbed Truck	Off-highw: Diesel
2027 Apron (GA Markings Other General Equipment	Other Con Diesel
2027 Apron (GA Markings Pickup Truck	Off-highw: Diesel
2027 Apron (GA Sealing/FuDistributing Tanker	Off-highw: Diesel
2027 Apron (GA Sealing/Fu Other General Equipment	Other Con Diesel
2027 Apron (GA Sealing/Fu Pickup Truck	Off-highw: Diesel
2027 Apron (GA Soil Erosio Other General Equipment	Other Con Diesel
2027 Apron (GA Soil Erosio Pickup Truck	Off-highw: Diesel
2027 Apron (GA Soil Erosio Pumps	Other Con Diesel
2027 Apron (GA Soil Erosio Tractors/Loader/Backhoe	Tractors/L Diesel
2027 Apron (GA Subbase P Dozer	Crawler Tr Diesel
2027 Apron (GA Subbase P Dump Truck (12 cy)	Off-highwi Diesel
2027 Apron (GA Subbase P Pickup Truck	Off-highw: Diesel
2027 Apron (GA Subbase P Roller	Rollers100 Diesel
2027 Apron (GA Topsoil Pla Dozer	Crawler Tr Diesel
2027 Apron (GA Topsoil Pla Dump Truck	Off-highw: Diesel
2027 Apron (GA Topsoil Pla Pickup Truck	Off-highw: Diesel
2027 Building - :Concrete F Backhoe	Tractors/L Diesel
2027 Building - :Concrete F Concrete Ready Mix Trucks	Off-highw: Diesel
2027 Building - : Concrete FFork Truck	Other Con Diesel
2027 Building - : Concrete FTool Truck	Off-highw: Diesel
2027 Building - : Concrete FTractor Trailer- Material Delivery	Off-highw: Diesel
2027 Building - : Constructi Survey Crew Trucks	Off-highw: Diesel
2027 Building - :Constructi Tractor Trailers Temp Fac.	Off-highw: Diesel
2027 Building - :Exterior W Fork Truck	Other Con Dies

2027 Apron (GAAsphalt Pli: Dump Truck

2027 Apron (GAAsphalt Pi:Other General Equipment
2027 Apron (GAAsphalt Pl Role
2027 Apron (GAAsphalt Pl:Skid Steer Loader
2027 Apron (GAClearing aıChain Saw
2027 Apron (GAClearing aı Pickup Truck
2027 Apron (GA Concrete FAir Compressor
2027 Apron (GA Concrete FConcrete Truck
2027 Apron (GA Concrete FOther General Equip
2027 Apron (GA Concrete FPickup Truck
2027 Apron (GA Concrete FSlip Form Paver
2027 Apron (GA Drainage - Dozer
2027 Apron (GA Drainage - Dump Truck
2027 Apron (GA Drainage - Loader
2027 Apron (GA Drainage - Pickup Truck
027 Apron (GADrainage - Dump
2027 Apron (GA Drainage - Loader
2027 Apron (GA Drainage - Pickup Truck
2027 Apron (GADrainage - Tractors/Loader/Backh
2027 Apron (GA Excavatior Dozer
2027 Apron (GA Excavatior Dump Truck (12
2027 Apron (GA Excavatior Roller
2027 Apron (GA Excavatior Dump Truck (12 cy)
2027 Apron GA Excavatior Excavator
2027 Apron (GA Excavatior Roller
2027 Apron (GA Excavatior Dozer
2027 Apron (GAFencing Concrete Truck
2027 Apron (GAFencing Other General Equipment
2027 Apron (GAFencing Pickup Truck
2027 Apron (GA Fencing Tractors/Loader/Backho
2027 Apron (GAGrading Dozer
2027 Apron (GA Grading Roller
2027 Apron (GA Hydroseec Off-Road Truck
2027 Apron (GALighting Loader
2027 Apron (GA Lighting Pickup Truck
2027 Apron (GALighting Skid Steer Loader
2027 Apron (GAMarkings Flatbed Truck
2027 Apron (GA Markings Pickup Truck
2027 Apron (GA Sealing/Fu Distributing Tanker
2027 Apron (GA Sealing/FuPickup Truck
2027 Apron (GA Soil Erosio Pickup Truck
2027 Apron (GA Soil Erosio Tractors/Loader/Backhoe
2027 Apron (GA Subbase P Dozer
2027 Apron (GA Subbase P Pickup Truck
2027 Apron (GA Topsoil Pla Dozer
2027 Apron (GA Topsoil Pla Dump Truck
2027 Building - :Concrete FBackhoe
2027 Building - :Exterior WFork Truck
$\begin{array}{lllllllllllllllllll}0.59 & 10.6915 & 0.083087 & 0.250139 & 536.7939 & 0.001426 & 0.020077 & 0.019475 & 0.012961 & 0.000101 & 0.000304 & 0.653195 & 1.74 \mathrm{E}-06 & 2.44 \mathrm{E}-05 & 2.37 \mathrm{E}-05 & 1.58 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}0.59 & 38.50625 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000408 & 0.001906 & 8.065905 & 2.13 \mathrm{E}-05 & 0.000116 & 0.000112 & 0.000157\end{array}$
 $\begin{array}{lllllllllllllllllllllll} \\ 0.59 & 10.6915 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000118 & 0.00067 & 0.414502 & 1.1 \mathrm{E}-06 & 2.14 \mathrm{E}-05 & 2.07 \mathrm{E}-05 & 1.05 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll} & 0.59 & 10.6915 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030761 & 0.029829 & 0.01505 & 0.000118 & 0.00067 & 0.414502 & 1.1 \mathrm{E}-06 & 2.14 \mathrm{E}-05 & 2.07 \mathrm{E}-05 \\ 0.21 & 10.6915 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.000477 & 0.000686 & 0.128929 & 3.92 \mathrm{E}-07 & 6.25 \mathrm{E}-05 & 6.06 \mathrm{E}-05 & 8.91 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrrrrrr}0.21 & 10.6915 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.000477 & 0.000686 & 0.128929 & 3.92 \mathrm{E}-07 & 6.25 \mathrm{E}-05 & 6.06 \mathrm{E}-05 \\ 0.59 & 13.68512 & 1.489019 & 3.762538 & 595.1512 & 0.002188 & 0.170468 & 0.165354 & 0.351665 & 0.000331 & 0.000837 & 0.132426 & 4.87 \mathrm{E}-07 & 3.79 \mathrm{E}-05 & 3.68 \mathrm{E}-05 \\ 7 & 7.82 \mathrm{E}-05\end{array}$ $\begin{array}{crlllllllllllllll}0.59 & 13.68512 & 1.489019 & 3.762538 & 595.1512 & 0.002188 & 0.170468 & 0.165354 & 0.351665 & 0.000331 & 0.000837 & 0.132426 & 4.87 \mathrm{E}-07 & 3.79 \mathrm{E}-05 & 3.68 \mathrm{E}-05 & 7.82 \mathrm{E}-0 \\ 0.7 & 22.8 & 2.461074 & 4.183513 & 593.7557 & 0.002183 & 0.238964 & 0.231795 & 0.837797 & 0.000476 & 0.00081 & 0.114905 & 4.22 \mathrm{E}-07 & 4.62 \mathrm{E}-05 & 4.49 \mathrm{E}-05 & 0.000162\end{array}$ $\begin{array}{rrrrrrrrrrrrrrr}0.7 & 22.8 & 2.461074 & 4.183513 & 593.7557 & 0.002183 & 0.238964 & 0.231795 & 0.837797 & 0.000476 & 0.00081 & 0.114905 & 4.22 \mathrm{E}-07 & 4.62 \mathrm{E}-05 & 4.49 \mathrm{E}-05 \\ 0.000162 \\ 0.43 & 22.8 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.000421 & 0.001276 & 0.644165 & 1.75 \mathrm{E}-06 & 6.43 \mathrm{E}-05 & 6.23 \mathrm{E}-05 \\ 3.78 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}0.43 & 22.8 & 0.389666 & 1.180819 & 536.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.000421 & 0.001276 & 0.644165 & 1.75 \mathrm{E}-06 & 6.43 \mathrm{E}-05 & 6.23 \mathrm{E}-05 & 3.78 \mathrm{E}-05 \\ 0.59 & 30.4 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000322 & 0.001505 & 6.367889 & 1.68 \mathrm{E}-05 & 9.13 \mathrm{E}-05 & 8.86 \mathrm{E}-05 & 0.000124\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 30.4 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000322 & 0.001505 & 6.367889 & 1.68 \mathrm{E}-05 & 9.13 \mathrm{E}-05 & 8.86 \mathrm{E}-05 & 0.000124 \\ 0.43 & 28.5104 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.000527 & 0.001596 & 0.805501 & 2.19 \mathrm{E}-06 & 8.03 \mathrm{E}-05 & 7.79 \mathrm{E}-05 & 4.72 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.43 & 28.5104 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.000527 & 0.001596 & 0.805501 & 2.19 \mathrm{E}-06 & 8.03 \mathrm{E}-05 & 7.79 \mathrm{E}-05 \\ 4.72 \mathrm{E}-05 \\ 0.59 & 28.5104 & 0.281744 & 2.531371 & 595.8804 & 0.00157 & 0.021132 & 0.020498 & 0.092708 & 0.000209 & 0.001877 & 0.441958 & 1.16 \mathrm{E}-06 & 1.57 \mathrm{E}-05 & 1.52 \mathrm{E}-05 \\ 6.88 \mathrm{E}-05\end{array}$ $\begin{array}{lrllllllllllllll}0.59 & 28.5104 & 0.281744 & 2.531371 & 595.8804 & 0.00157 & 0.021132 & 0.020498 & 0.092708 & 0.000209 & 0.001877 & 0.441958 & 1.16 \mathrm{E}-06 & 1.57 \mathrm{E}-05 & 1.52 \mathrm{E}-05 & 6.88 \mathrm{E}-05 \\ 0.59 & 118.7933 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.00126 & 0.00588 & 24.88364 & 6 & 67 \mathrm{E}-05 & 0.000357 & 0.00346\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 118.7933 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.00126 & 0.00588 & 24.88364 & 6.57 \mathrm{E}-05 & 0.000357 & 0.000346 & 0.000485\end{array}$ $\begin{array}{llllllllllllllllllll}0.43 & 57.0208 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000794 & 0.002369 & 2.538731 & 6.9 \mathrm{E}-06 & 0.000193 & 0.000187 & 0.000137\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 85.5312 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000907 & 0.004233 & 17.91622 & 4.73 \mathrm{E}-05 & 0.000257 & 0.000249 & 0.000349 \\ 0.59 & 28.5104 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.14676 & 0.164407 & 0.002127 & 0.003986 & 2.031518 & 5.81 \mathrm{E}-06 & 0.000491 & 0.000476 & 0.000533\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 28.5104 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.002127 & 0.003986 & 2.031518 & 5.81 \mathrm{E}-06 & 0.000491 & 0.000476 & 0.000533\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 28.5104 & 0.083087 & 0.250139 & 536.7939 & 0.001426 & 0.020077 & 0.019475 & 0.012961 & 0.00027 & 0.000812 & 1.741837 & 4.63 \mathrm{E}-06 & 6.51 \mathrm{E}-05 & 6.32 \mathrm{E}-05 \\ 4.21 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 28.5104 & 1.489019 & 3.762538 & 595.1512 & 0.002188 & 0.170468 & 0.165354 & 0.351665 & 0.00069 & 0.001744 & 0.275886 & 1.01 \mathrm{E}-06 & 7.9 \mathrm{E}-05 & 7.67 \mathrm{E}-05 \\ 0.000163\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 11.328 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 8.98 \mathrm{E}-05 & 0.000292 & 0.692088 & 1.83 \mathrm{E}-06 & 2.12 \mathrm{E}-05 & 2.05 \mathrm{E}-05 \\ 1.43 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 11.328 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.00012 & 0.000561 & 2.372877 & 6.26 E-06 & 3.4 E-05 & 3.3 E-05 & 4.62 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 11.328 & 0.059583 & 0.19603 & 536.8041 & 0.001417 & 0.013754 & 0.013341 & 0.009662 & 7.68 \mathrm{E}-05 & 0.000253 & 0.692095 & 1.83 \mathrm{E}-06 & 1.77 \mathrm{E}-05 & 1.72 \mathrm{E}-05 & 1.25 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 11.328 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.000845 & 0.001584 & 0.80718 & 2.31 \mathrm{E}-06 & 0.000195 & 0.000189 & 0.000212\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 11.328 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000158 & 0.000471 & 0.504355 & 1.37 E-06 & 3.84 E-05 & 3.72 \mathrm{E}-05 & 2.72 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 11.328 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.00012 & 0.000561 & 2.372877 & 6.26 E-06 & 3.4 \mathrm{E}-05 & 3.3 \mathrm{E}-05 & 4.62 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 11.328 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000125 & 0.000709 & 0.439179 & 1.17 \mathrm{E}-06 & 2.27 \mathrm{E}-05 & 2.2 \mathrm{E}-05 & 1.11 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 6.293333 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 6.67 \mathrm{E}-05 & 0.000311 & 1.318265 & 3.48 \mathrm{E}-06 & 1.89 \mathrm{E}-05 & 1.83 \mathrm{E}-05 & 2.57 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0.59 & 6.293333 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.00047 & 0.00088 & 0.448433 & 1.28 E-06 & 0.000108 & 0.000105 & 0.000118\end{array}$ $\begin{array}{llllllllllllllllllll}0.43 & 6.293333 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 8.76 \mathrm{E}-05 & 0.000261 & 0.280197 & 7.61 \mathrm{E}-07 & 2.13 \mathrm{E}-05 & 2.07 \mathrm{E}-05 & 1.51 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 6.293333 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 6.67 \mathrm{E}-05 & 0.000311 & 1.318265 & 3.48 \mathrm{E}-06 & 1.89 \mathrm{E}-05 & 1.83 \mathrm{E}-05 & 2.57 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.21 & 6.293333 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.000233 & 0.000278 & 0.101298 & 2.9 \mathrm{E}-07 & 3.31 \mathrm{E}-05 & 3.21 \mathrm{E}-05 & 3.32 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllllllllllll}0.59 & 47.51733 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000504 & 0.002352 & 9.953457 & 2.63 \mathrm{E}-05 & 0.000143 & 0.000138 & 0.000194\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 47.51733 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000504 & 0.002352 & 9.953457 & 2.63 \mathrm{E}-05 & 0.000143 & 0.000138 & 0.000194 \\ 0.59 & 47.51733 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000504 & 0.002352 & 9.953457 & 2.63 \mathrm{E}-05 & 0.000143 & 0.000138 & 0.000194\end{array}$
 $\begin{array}{lllllllllllllllllllllll}0.59 & 1.9308 & 0.69521 & 0.962846 \\ 0.59 & 35.638 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 0.000282 & 0.000918 & 2.8577316 & 5.76 \mathrm{E}-06 & 6.66 \mathrm{E}-05 & 6.46 \mathrm{E}-05 & 4.49 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllllllll}0.59 & 95.03467 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001008 & 0.004704 & 19.90691 & 5.25 E-05 & 0.000286 & 0.000277 & 0.000388\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 28.5104 & 0.0 .001417 & 0.013754 & 0.013341 & 0.009662 & 0.000193 & 0.00063 & 1.74187 & 4.6 \mathrm{E}-06 & 4.46 \mathrm{E}-05 & 4.33 \mathrm{E}-05 & 3.14 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 28.5104 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000302 & 0.001411 & 5.972074 & 1.58 \mathrm{E}-05 & 8.57 \mathrm{E}-05 & 8.31 \mathrm{E}-05 & 0.000116\end{array}$ $\begin{array}{lrrrrrrrrrrrrr}0.59 & 28.5104 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000314 & 0.001785 & 1.10533 & 2.94 \mathrm{E}-06 & 5.7 \mathrm{E}-05 \\ 5.53 \mathrm{E}-05 & 2.79 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 35.638 & 0.131479 & 0.345281 & 536.7629 & 0.001454 & 0.025045 & 0.024294 & 0.023055 & 0.001828 & 0.004802 & 7.464584 & 2.02 \mathrm{E}-05 & 0.000348 & 0.000338 & 0.000321\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 13.41678 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 0.000106 & 0.000346 & 0.819703 & 2.17 \mathrm{E}-06 & 2.51 \mathrm{E}-05 & 2.43 \mathrm{E}-05 & 1.69 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 3.822222 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 4.05 \mathrm{E}-05 & 0.000189 & 0.800641 & 2.11 \mathrm{E}-06 & 1.15 \mathrm{E}-05 & 1.11 \mathrm{E}-05 & 1.56 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 15.28889 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000162 & 0.000757 & 3.202564 & 8.45 \mathrm{E}-06 & 4.59 \mathrm{E}-05 & 4.46 \mathrm{E}-05 & 6.24 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 15.28889 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000213 & 0.000635 & 0.680706 & 1.85 E-06 & 5.18 E-05 & 5.02 \mathrm{E}-05 & 3.67 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 15.28889 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000162 & 0.000757 & 3.202564 & 8.45 E-06 & 4.59 E-05 & 4.46 \mathrm{E}-05 & 6.24 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.21 & 15.28889 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.000682 & 0.000981 & 0.18437 & 5.61 \mathrm{E}-07 & 8.94 \mathrm{E}-05 & 8.67 \mathrm{E}-05 & 0.000127\end{array}$ $\begin{array}{llllllllllllllllll}0.21 & 15.28889 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.000565 & 0.000675 & 0.246091 & 7.04 E-07 & 8.03 \mathrm{E}-05 & 7.79 \mathrm{E}-05 & 8.07 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 9.1948 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 7.29 \mathrm{E}-05 & 0.000237 & 0.56176 & 1.49 \mathrm{E}-06 & 1.72 \mathrm{E}-05 & 1.67 \mathrm{E}-05 & 1.16 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 9.1948 & 0.032003 & 0.140888 & 536.7963 & 0.001419 & 0.008755 & 0.008492 & 0.011426 & 5.74 \mathrm{E}-05 & 0.000253 & 0.963012 & 2.55 \mathrm{E}-06 & 1.57 \mathrm{E}-05 & 1.52 \mathrm{E}-05 & 2.05 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 9.1948 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000101 & 0.000576 & 0.356476 & 9.49 \mathrm{E}-07 & 1.84 \mathrm{E}-05 & 1.78 \mathrm{E}-05 & 9 \mathrm{E}-06\end{array}$
 $\begin{array}{lllllllllllllllllllllll}0.59 & 8.2836 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 8.78 \mathrm{E}-05 & 0.00041 & 1.735166 & 4.58 \mathrm{E}-06 & 2.49 \mathrm{E}-05 & 2.41 \mathrm{E}-05 & 3.38 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllllllll}0.59 & 7.573333 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.000565 & 0.001059 & 0.53964 & 1.54 \mathrm{E}-06 & 0.00013 & 0.000127 & 0.000142\end{array}$ $\begin{array}{llllllllllllllllllll}0.43 & 7.573333 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000105 & 0.000315 & 0.337187 & 9.16 \mathrm{E}-07 & 2.56 \mathrm{E}-05 & 2.49 \mathrm{E}-05 & 1.82 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.59 & 7.573333 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 8.03 \mathrm{E}-05 & 0.000375 & 1.586386 & 4.19 \mathrm{E}-06 & 2.28 \mathrm{E}-05 & 2.21 \mathrm{E}-05 & 3.09 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.21 & 7.573333 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.000338 & 0.000486 & 0.091327 & 2.78 \mathrm{E}-07 & 4.43 \mathrm{E}-05 & 4.3 \mathrm{E}-05 & 6.31 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.21 & 7.573333 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.00028 & 0.000334 & 0.121901 & 3.49 \mathrm{E}-07 & 3.98 \mathrm{E}-05 & 3.86 \mathrm{E}-05 & 4 \mathrm{E}-05\end{array}$
 $\begin{array}{lllllllllllllllll}0.59 & 176.128 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001868 & 0.008717 & 36.89354 & 9.74 \mathrm{E}-05 & 0.000529 & 0.000513 & 0.000719\end{array}$

 $\begin{array}{lllllllllllllll}0.59 & 22.80853 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000242 & 0.001129 & 4.777704 & 1.26 E-05 & 6.85 E-05 & 6.65 \mathrm{E}-05 \\ 0.43 & 22.80853 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.02890 & 0.000318 & 0.000948 & 1.015502 & 2.76 E-06 & 7.72 \mathrm{E}-05 & 7.49 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllllllllllllllll}0.59 & 22.80853 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000242 & 0.001129 & 4.777704 & 1.26 \mathrm{E}-05 & 6.85 \mathrm{E}-05 & 6.65 \mathrm{E}-05 & 9.3 \mathrm{E}-05\end{array}$ $\begin{array}{lrrrrrrrrrrrrrr}0.43 & 7.6 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000106 & 0.000316 & 0.338374 & 9.19 \mathrm{E}-07 & 2.57 \mathrm{E}-05 & 2.5 \mathrm{E}-05 \\ 0.82 \mathrm{E}-05\end{array}$ $\begin{array}{lrllllllllllllll}0.59 & 15.2 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000161 & 0.000752 & 3.183945 & 8.4 \mathrm{E}-06 & 4.57 \mathrm{E}-05 & 4.43 \mathrm{E}-05 & 6.2 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.43 & 7.6 & 2.461074 & 4.183513 & 593.7557 & 0.002183 & 0.238964 & 0.231795 & 0.837797 & 9.75 \mathrm{E}-05 & 0.000166 & 0.023528 & 8.65 \mathrm{E}-08 & 9.47 \mathrm{E}-06 & 9.19 \mathrm{E}-06 \\ 3.32 \mathrm{E}-05 \\ 0.21 & 7.6 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.000281 & 0.000336 & 0.12233 & 3.5 \mathrm{E}-07 & 3.99 \mathrm{E}-05 & 3.87 \mathrm{E}-05 \\ 4.01 \mathrm{E}-05\end{array}$ | 0.21 | 7.6 | 1.596653 | 1.90781 | 695.3356 | 0.00199 | 0.226892 | 0.220085 | 0.227907 | 0.000281 | 0.000336 | 0.12233 | $3.5 \mathrm{E}-07$ | $3.99 \mathrm{E}-05$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $3.87 \mathrm{E}-05$ | $4.01 \mathrm{E}-05$ | | | | | | | | | | | | |
| 0.59 | 18.00674 | 0.069639 | 0.226304 | 536.7988 | 0.001421 | 0.016409 | 0.015917 | 0.011077 | 0.000143 | 0.000464 | 1.100128 | $2.91 \mathrm{E}-06$ | $3.36 \mathrm{E}-05$ | $\begin{array}{lllllllllllllllllllll}0.59 & 18.00674 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 0.000143 & 0.000464 & 1.100128 & 2.91 \mathrm{E}-06 & 3.36 \mathrm{E}-05 & 3.26 \mathrm{E}-05 & 2.27 \mathrm{E}-05 \\ 0.59 & 126.7156 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001344 & 0.006272 & 26.54311 & 7 \mathrm{E}-05 & 0.000381 & 0.000369 & 0.000517\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.59 & 126.7156 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001344 & 0.006272 & 26.54311 & 7 E-05 & 0.000381 & 0.000369 & 0.000517\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 18.00674 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000191 & 0.000891 & 3.771872 & 9.95 \mathrm{E}-06 & 5.41 \mathrm{E}-05 & 5.25 \mathrm{E}-05 & 7.35 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 17.54523 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000193 & 0.001099 & 0.680217 & 1.81 \mathrm{E}-06 & 3.51 \mathrm{E}-05 & 3.4 \mathrm{E}-05 & 1.72 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 20.43333 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 0.000162 & 0.000526 & 1.248382 & 3.31 \mathrm{E}-06 & 3.82 \mathrm{E}-05 & 3.7 \mathrm{E}-05 & 2.58 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.59 & 20.43333 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000217 & 0.001011 & 4.280171 & 1.13 \mathrm{E}-05 & 6.14 \mathrm{E}-05 & 5.95 \mathrm{E}-05 & 8.34 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 20.43333 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000217 & 0.001011 & 4.280171 & 1.13 \mathrm{E}-05 & 6.14 \mathrm{E}-05 & 5.95 \mathrm{E}-05 & 8.34 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.21 & 320 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.011827 & 0.014132 & 5.150748 & 1.47 \mathrm{E}-05 & 0.001681 & 0.00163 & 0.001688\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 60 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000636 & 0.00297 & 12.5682 & 3.32 \mathrm{E}-05 & 0.00018 & 0.000175 & 0.000245\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 320 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.00811 & 0.024575 & 12.40498 & 3.37 \mathrm{E}-05 & 0.001237 & 0.0012 & 0.000728\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 80 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000848 & 0.00396 & 16.7576 & 4.42 \mathrm{E}-05 & 0.00024 & 0.000233 & 0.000326\end{array}$

 $\begin{array}{lllllllllllllllllllll}10 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000106 & 0.000495 & 2.0947 & 5.53 \mathrm{E}-06 & 3 \mathrm{E}-05 & 2.91 \mathrm{E}-05 & 4.08 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllll}240 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.006082 & 0.018431 & 9.303734 & 2.53 \mathrm{E}-05 & 0.000928 & 0.0009 & 0.000546\end{array}$

2027 Building - :Exterior WMan Lift	ugh Ter Diesel
2027 Building - : Exterior WTool Truck	Off-highw: Diesel
2027 Building - :Exterior WTractor Trailer- Material Delivery	Off-highw: Diesel
2027 Building - : Interior BuFork Truck	Other Con Diesel
027 Building - : Interior BLMan Lift	Rough Ter Diesel
2027 Building - :Interior BuTool Truck	Off-highw: Diesel
2027 Building - :Interior BLTractor Trailer- Material Delivery	Off-highw: Diesel
2027 Building - :Roofing High Lift	Rough Ter Diesel
2027 Building - :Roofing Man Lift (Fascia Construction)	Rough Ter Diesel
2027 Building -:Roofing Material Deliveries	Off-highw: Diesel
2027 Building - :Roofing Tractor Trailer- Material Delivery	Off-highw: Diesel
2027 Building - :Security \& High Lift	Rough Ter Diesel
2027 Building - : Security \& Tool Truck	Off-highw: Diesel
2027 Building - : Structural 40 Ton Crane	Cranes 300 Diesel
2027 Building - :Structural Fork Truck	Other Con Diesel
2027 Building - :Structural Tool Truck	Off-highw: Diesel
2027 Building - :Structural Tractor Trailer-Steel Deliveries	Off-highw: Diesel
2027 Access Rocisphalt Pli Asphalt Paver	Pavers175 Diesel
2027 Access RocAsphalt Pli Dump Truck	Off-highw: Diesel
2027 Access RoîAsphalt PliOther General Equipment	Other Con Diesel
2027 Access Ro^Asphalt Pli Pickup Truck	Off-highw: Diesel
2027 Access Roc̃Asphalt Pli Roller	Rollers 100 Diesel
2027 Access Roas Asphalt Pli Skid Steer Loader	Skid Steer Diesel
2027 Access RocAsphalt Pli Surfacing Equipment (Grooving)	Other Con Diesel
2027 Access RočClearing aıChain Saw	Other Con Diesel
2027 Access RoçClearing aıChipper/Stump Grinder	Other Con Diesel
2027 Access Roéclearing aıPickup Truck	Off-highw: Diesel
2027 Access Rǫ Concrete FAir Compressor	Other Con Diesel
2027 Access Roz Concrete FConcrete Saws	Other Con Diesel
2027 Access Roc Concrete FConcrete Truck	Off-highw: Diesel
2027 Access Rǒ Concrete FOther General Equip	Other Con Diesel
2027 Access RozConcrete FPickup Truck	Off-highw: Diesel
2027 Access RocConcrete F Rubber Tired Loader	Tractors/L Diesel
2027 Access RoćConcrete FSlip Form Paver	Pavers175 Diesel
2027 Access RocConcrete FSurfacing Equipment (Grooving)	Other Con Diesel
2027 Access RoćCurbing Concrete Truck	Off-highw: Diesel
2027 Access Roc Curbing Curb/Gutter Paver	Pavers175 Diesel
2027 Access RocCurbing Other General Equipment	Other Con Diesel
2027 Access RoćCurbing Pickup Truck	Off-highw: Diesel
2027 Access RocDrainage - Dozer	Crawler Tr Diesel
2027 Access RoćDrainage - Dump Truck	Off-highw: Diesel
2027 Access Rǒ Drainage - Excavator	Excavators Diesel
2027 Access Rǒ Drainage - Loader	Tractors/L Diesel
2027 Access Ro亢Drainage - Other General Equipment	Other Con Diesel
2027 Access Rǒ Drainage - Pickup Truck	Off-highw: Diesel
2027 Access Roc Drainage - Roller	Rollers 100 Diesel
2027 Access Roc Drainage - Dump Truck	Off-highw: Diesel
2027 Access Ro¢ Drainage - Loader	Tractors/L Diesel
2027 Access RǒDrainage - Other General Equipment	Other Con Diesel
2027 Access Ro^Drainage - Pickup Truck	Off-highw: Diesel
2027 Access RocDrainage - Tractors/Loader/Backhoe	Tractors/LD Diesel
2027 Access Ro¢ Dust Contr Water Truck	Off-highw: Diesel
2027 Access RoćExcavatior Dozer	Crawler Tr Diesel
2027 Access RȯExcavatior Dump Truck (12 cy)	Off-highw: Diesel
2027 Access RȯExcavatior Pickup Truck	Off-highw: Diesel
2027 Access RȯExcavatior Roller	Rollers 100 Diesel
2027 Access RoćExcavatior Dozer	Crawler Tr Diesel
2027 Access RȯExcavatior Dump Truck (12 cy)	Off-highw: Diesel
2027 Access RȯExcavatior Excavator	Excavators Diesel
2027 Access RȯExcavatior Pickup Truck	Off-highw: Diesel
2027 Access RȯExcavatior Roller	Rollers 100 Diesel
2027 Access RoéExcavatior Scraper	Scrapers6(Diesel
2027 Access RoćExcavatior Dozer	Crawler Tr Diesel
2027 Access RoćFencing Concrete Truck	Off-highw: Diesel
2027 Access RoćFencing Dump Truck	Off-highw: Diesel
2027 Access Ročencing Other General Equipment	Other Con Diesel
2027 Access RozFencing Pickup Truck	Off-highw: Diesel
2027 Access Roc̄Fencing Skid Steer Loader	Skid Steer Diesel
2027 Access RočFencing Tractors/Loader/Backhoe	Tractors/L Diesel
2027 Access RȯGrading Dozer	Crawler Tr Diesel
2027 Access Ro¢Grading Grader	Graders30 Diesel
2027 Access RoćGrading Roller	Rollers 100 Diesel
2027 Access Roz Hydroseec Hydroseeder	Other Con Diesel
2027 Access Roa Hydroseec Off-Road Truck	Off-highw: Diesel
2027 Access RozMarkings Flatbed Truck	Off-highw: Diesel
2027 Access Roc Markings Other General Equipment	Other Con Diesel
2027 Access Roa Markings Pickup Truck	Off-highw: Diesel
2027 Access RocSidewalks Concrete Truck	Off-highw: Diesel
2027 Access RoćSidewalks Dump Truck	Off-highw: Diesel
2027 Access RȯSidewalks Pickup Truck	Off-highw: Diesel
2027 Access RoÉSidewalks Tractors/Loader/Backhoe	Tractors/L Diesel
2027 Access RozSidewalks Vibratory Compactor	Plate Com Diesel
2027 Access Ro=Soil Erosio Other General Equipment	Other Con Diesel
2027 Access Rō̃Soil Erosio Pickup Truck	Off-highw: Diesel

[^26] $\begin{array}{rr}100 & 0 \\ 75 & 0\end{array}$

$2400.3505142 .628267595 .94610 .0016130 .0369990 .0358890 .069204 \quad 0.0014610 .010951 \quad 2.483164 \quad 6.72 \mathrm{E}-060.000154 \quad 0.000150 .000288$ $\begin{array}{lllllllllllllll}60 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000636 & 0.00297 & 12.5682 & 3.32 \mathrm{E}-05 & 0.00018 & 0.000175 & 0.000245\end{array}$
 $\begin{array}{lllllllllllllllllllll}960 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.024329 & 0.073725 & 37.21494 & 0.000101 & 0.003712 & 0.003601 & 0.002183\end{array}$ $\begin{array}{lllllllllllllllllll}960 & 0.350514 & 2.628267 & 595.9461 & 0.001613 & 0.036999 & 0.035889 & 0.069204 & 0.005842 & 0.043805 & 9.932654 & 2.69 \mathrm{E}-05 & 0.000617 & 0.000598 & 0.001153\end{array}$ $\begin{array}{llllllllllllllllllllllll}120 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001272 & 0.005939 & 25.1364 & 6.63 \mathrm{E}-05 & 0.000361 & 0.00035 & 0.00049\end{array}$

 $\begin{array}{lllllllllllllll}120 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.001272 & 0.005939 & 25.1364 & 6.63 \mathrm{E}-05 & 0.000361 & 0.00035 & 0.00049 \\ 120 & 0.296993 & 1.083208 & 596.0803 & 0.001606 & 0.047198 & 0.045782 & 0.026655 & 0.002318 & 0.008454 & 4.652052 & 1.25 \mathrm{E}-05 & 0.000368 & 0.000357 & 0.000208\end{array}$ $\begin{array}{lllllllllllllll}120 & 0.296993 & 1.083208 & 596.0803 & 0.001606 & 0.047198 & 0.045782 & 0.026655 & 0.002318 & 0.008454 & 4.652052 & 1.25 \mathrm{E}-05 & 0.000368 & 0.000357 & 0.000208 \\ 120 & 0.350514 & 2.628267 & 595.9461 & 0.001613 & 0.036999 & 0.035889 & 0.069204 & 0.00073 & 0.005476 & 1.241582 & 3.36 \mathrm{E}-06 & 7.71 \mathrm{E}-05 & 7.48 \mathrm{E}-05 & 0.000144\end{array}$ $\begin{array}{rrrrrrrrrrrrr}120 & 0.350514 & 2.628267 & 595.9461 & 0.001613 & 0.036999 & 0.035889 & 0.069204 & 0.00073 & 0.005476 & 1.241582 & 3.36 \mathrm{E}-06 & 7.71 \mathrm{E}-05 \\ 8 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 8.48 \mathrm{E}-05 & 0.000396 & 1.67576 & 4.42 \mathrm{E}-06 & 2.4 \mathrm{E}-05 \\ 2.33 \mathrm{E}-05 & 3.26 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrrr}8 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 8.48 \mathrm{E}-05 & 0.000396 & 1.67576 & 4.42 \mathrm{E}-06 \\ 2.45 \mathrm{E}-05 & 2.33 \mathrm{E}-05 & 3.26 \mathrm{E}-05\end{array}$ $\begin{array}{rrrrrrrrrrrrrr}12 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000127 & 0.000594 & 2.51364 & 6.63 \mathrm{E}-06 & 3.61 \mathrm{E}-05 & 3.5 \mathrm{E}-05 \\ 320 & 0.296993 & 1.083208 & 596.0803 & 0.001606 & 0.047198 & 0.045782 & 0.026655 & 0.006181 & 0.025543 & 12.40547 & 3.34 \mathrm{E}-05 & 0.000982 & 0.000953\end{array}$ \begin{tabular}{rrrrrrrrrrrr}
320 \& 0.296993 \& 1.083208 \& 596.0803 \& 0.001606 \& 0.047198 \& 0.045782 \& 0.026655 \& 0.006181 \& 0.022543 \& 12.40547 \& $3.34 \mathrm{E}-05$

80 \& 0.027174 \& 0.126836 \& 536.7995 \& 0.000982 \& 0.000953 \& 0.000555

\hline

 $\begin{array}{rrrrrrrrrrrr}80 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000848 & 0.00396 & 16.7576 & 4.42 \mathrm{E}-05 \\ 240 & 0.052989 & 0.00024 & 0.000233 & 0.000326\end{array}$ $\begin{array}{lllllllllllllll}240 & 0.052989 & 0.225446 & 530.9934 & 0.001419 & 0.012453 & 0.01208 & 0.016841 & 0.001808 & 0.007694 & 18.1216 & 4.84 \mathrm{E}-05 & 0.000425 & 0.000412 & 0.000575\end{array}$ $\begin{array}{rllllllllllllll}120 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.003041 & 0.009216 & 4.651867 & 1.26 \mathrm{E}-05 & 0.000464 & 0.00045 & 0.000273\end{array}$ $\begin{array}{llllllllllllll}60 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000636 & 0.00297 & 12.5682 & 3.32 \mathrm{E}-05 & 0.00018 & 0.000175 \\ 0\end{array}$

16 \& 0.027174 \& 0.126836 \& 536.7995 \& 0.001416 \& 0.007699 \& 0.007468 \& 0.010454 \& 0.00017 \& 0.000792 \& 3.351521 \& $8.84 \mathrm{E}-06$ \& $4.81 \mathrm{E}-05$ \& $4.66 \mathrm{E}-05$

$6.53 \mathrm{E}-05$

\hline 175 \& 0.083087 \& 0.250139 \& 536.9939 \& 0.001426 \& 0.020077 \& 0.019475 \& 0.012961 \& $2.13 \mathrm{E}-05$ \& $6.4 \mathrm{E}-05$ \& 0.137326 \& $3.65 \mathrm{E}-07$ \& $5.14 \mathrm{E}-0$ \& $4.98 \mathrm{E}-06$

2.24775 \& 0.083087 \& 0.250139 \& 536.7939 \& 0.001426 \& 0.020077 \& 0.019475 \& 0.012961 \& $2.13 \mathrm{E}-05$ \& $6.4 \mathrm{E}-05$ \& 0.137326 \& $3.65 \mathrm{E}-07$ \& $5.14 \mathrm{E}-06$

\hline $0.98 \mathrm{E}-06$ \& $3.32 \mathrm{E}-06$

\hline 095442 \& 0.027174 \& 0.126836 \& 536.7995 \& 0.001416 \& 0.007699 \& 0.007468 \& 0.010454 \& $8.58 \mathrm{E}-05$ \& 0.000401 \& 1.695752 \& $4.47 \mathrm{E}-06$ \& $2.43 \mathrm{E}-05$
\end{tabular} 4.4955 $\begin{array}{lllllllllllllll}4.4955 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 6.26 \mathrm{E}-05 & 0.000187 & 0.200153 & 5.44 \mathrm{E}-07 & 1.52 \mathrm{E}-05 & 1.48 \mathrm{E}-05 & 1.08 \mathrm{E}-05\end{array}$ $2.247750 .0271740 .126836536 .79950 .0014160 .0076990 .0074680 .010454 \quad 2.38 \mathrm{E}-050000001110.470836$ $\begin{array}{lllllllllllllllll}2.24775 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 2.48 \mathrm{E}-05 & 0.000141 & 0.087144 & 2.32 \mathrm{E}-07 & 4.5 \mathrm{E}-06 & 4.36 \mathrm{E}-06 & 2.2 \mathrm{E}-06\end{array}$

 $\begin{array}{lllllllllllllllll}1.489019 & 3.762538 & 595.1512 & 0.002188 & 0.170468 & 0.165354 & 0.351665 & 6.97 \mathrm{E}-05 & 0.000176 & 0.027841 & 1.02 \mathrm{E}-07 & 7.97 \mathrm{E}-06 & 7.74 \mathrm{E}-06 & 1.65 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}6 & 2.461074 & 4.183513 & 593.7557 & 0.002183 & 0.238964 & 0.231795 & 0.837797 & 0.000125 & 0.000213 & 0.030238 & 1.11 \mathrm{E}-07 & 1.22 \mathrm{E}-05 & 1.18 \mathrm{E}-05 & 4.27 \mathrm{E}-05 \\ 6 & 0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.000111 & 0.000336 & 0.169517 & 4.61 \mathrm{E}-07 & 1.69 \mathrm{E}-05 & 1.64 \mathrm{E}-05 & 9.94 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}0.389666 & 1.180819 & 596.0566 & 0.00162 & 0.059454 & 0.05767 & 0.03496 & 0.000111 & 0.000336 & 0.169517 & 4.61 \mathrm{E}-07 & 1.69 \mathrm{E}-05 & 1.64 \mathrm{E}-05 & 9.94 \mathrm{E}-06\end{array}$ | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5.9944 | 0.389666 | 1.180819 | 596.0566 | 0.00162 | 0.059454 | 0.05767 | 0.03496 | 0.000111 | 0.000336 | 0.169359 | $4.6 \mathrm{E}-07$ | $1.69 \mathrm{E}-05$ | $1.64 \mathrm{E}-05$ | $\begin{array}{llllllllllllllllll}5.9944 & 0.281744 & 2.531371 & 595.8804 & 0.00157 & 0.021132 & 0.020498 & 0.092708 & 4.39 \mathrm{E}-05 & 0.000395 & 0.092923 & 2.45 \mathrm{E}-07 & 3.3 \mathrm{E}-06 & 3.2 \mathrm{E}-06 & 1.45 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}1.97667 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000265 & 0.001236 & 5.231863 & 1.38 \mathrm{E}-05 & 7.5 \mathrm{E}-05 & 7.28 \mathrm{E}-05 & 0.000102\end{array}$ $\begin{array}{llllllllllllllllllllllllll}11.9888 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000167 & 0.000498 & 0.533776 & 1.45 \mathrm{E}-06 & 4.06 \mathrm{E}-05 & 3.94 \mathrm{E}-05 & 2.87 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}17.9832 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000191 & 0.00089 & 3.766942 & 9.94 \mathrm{E}-06 & 5.4 \mathrm{E}-05 & 5.24 \mathrm{E}-05 & 7.34 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllll}5.9944 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.000447 & 0.000838 & 0.427133 & 1.22 \mathrm{E}-06 & 0.000103 & 0.0001 & 0.000112\end{array}$ $\begin{array}{lllllllllllllllll}5.9944 & 0.083087 & 0.250139 & 536.7939 & 0.001426 & 0.020077 & 0.019475 & 0.012961 & 5.67 \mathrm{E}-05 & 0.000171 & 0.366227 & 9.73 \mathrm{E}-07 & 1.37 \mathrm{E}-05 & 1.33 \mathrm{E}-05 & 8.84 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllll}5.9944 & 1.489019 & 3.762538 & 595.1512 & 0.002188 & 0.170468 & 0.165354 & 0.351665 & 0.000145 & 0.000367 & 0.058006 & 2.13 \mathrm{E}-07 & 1.66 \mathrm{E}-05 & 1.61 \mathrm{E}-05 & 3.43 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}21.6 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000229 & 0.001069 & 4.524553 & 1.19 \mathrm{E}-05 & 6.49 \mathrm{E}-05 & 6.29 \mathrm{E}-05 & 8.81 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}21.6 & 0.083087 & 0.250139 & 536.7939 & 0.001426 & 0.020077 & 0.019475 & 0.012961 & 0.000204 & 0.000615 & 1319647 & 3.51 \mathrm{E}-06 & 4.94 \mathrm{E}-05 & 4.79 \mathrm{E}-05 & 3.19 \mathrm{E}\end{array}$ $\begin{array}{llllllllllllllllllll}21.6 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000301 & 0.000898 & 0.961694 & 2.61 \mathrm{E}-06 & 7.31 \mathrm{E}-05 & 7.09 \mathrm{E}-05 & 5.18 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}21.6 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000229 & 0.001069 & 4.524553 & 1.19 \mathrm{E}-05 & 6.49 \mathrm{E}-05 & 6.29 \mathrm{E}-05 & 8.81 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllll}17.6 & 0.059583 & 0.19603 & 536.8041 & 0.001417 & 0.013754 & 0.013341 & 0.009662 & 0.000119 & 0.000393 & 1.075289 & 2.84 \mathrm{E}-06 & 2.76 \mathrm{E}-05 & 2.67 \mathrm{E}-05 & 1.94 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllll}17.6 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.001313 & 0.00246 & 1.254094 & 3.59 \mathrm{E}-06 & 0.000303 & 0.000294 & 0.000329\end{array}$ $\begin{array}{lllllllllllllllll}17.6 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.001313 & 0.00246 & 1.254094 & 3.59 \mathrm{E}-06 & 0.000303 & 0.000294 & 0.000329 \\ 17.6 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000245 & 0.000731 & 0.783603 & 2.13 \mathrm{E}-06 & 5.96 \mathrm{E}-05 & 5.78 \mathrm{E}-05 & 4.22 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}17.6 & 0.162734 & 0.1693 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000245 & 0.000731 & 0.783603 & 2.13 \mathrm{E}-06 & 5.96 \mathrm{E}-05 & 5.78 \mathrm{E}-05 & 4.22 \mathrm{E}-05 \\ 17.6 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000187 & 0.000871 & 3.686673 & 9.73 \mathrm{E}-06 & 5.29 \mathrm{E}-05 & 5.13 \mathrm{E}-05 & 7.18 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}17.6 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 0.000194 & 0.001102 & 0.682341 & 1.82 \mathrm{E}-06 & 3.52 \mathrm{E}-05 & 3.41 \mathrm{E}-05 & 1.72 \mathrm{E}-0\end{array}$ $\begin{array}{llllllllllllllll} & .777778 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000104 & 0.000484 & 2.048151 & 5.4 \mathrm{E}-06 & 2.94 \mathrm{E}-05 & 2.85 \mathrm{E}-05 & 3.99 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}.777778 & 0.655566 & 1.228319 & 626.0668 & 0.00179 & 0.151301 & 0.146762 & 0.164407 & 0.00073 & 0.001367 & 0.696719 & 1.99 \mathrm{E}-06 & 0.000168 & 0.000163 & 0.000183\end{array}$
 7777780.0271740 .126836536 .79950 .0014160 .0076990 .0074680 .0104540 .00010400 .0004842 .048151 $\begin{array}{llllllllllllllll} & 177778 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.000361 & 0.000432 & 0.157384 & 4.5 \mathrm{E}-07 & 5.14 \mathrm{E}-05 & 4.98 \mathrm{E}-05 & 5.16 \mathrm{E}-05\end{array}$ 21600.0271740 .126836536 .79950 .0014160 .0076990 .0074680 .0104540 .0229050 .106907452 .45530 .0011940 .0064890 .0062950 .008812 $\begin{array}{lllllllllllllll}7.493 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 5.94 \mathrm{E}-05 & 0.000193 & 0.457787 & 1.21 \mathrm{E}-06 & 1.4 \mathrm{E}-05 & 1.36 \mathrm{E}-05 & 9.45 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllll} & 0.98133 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000212 & 0.000989 & 4.185491 & 1.1 \mathrm{E}-05 & 6 \mathrm{E}-05 & 5.82 \mathrm{E}-05 & 8.15 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}5.9944 & 0.059583 & 0.19603 & 536.8041 & 0.001417 & 0.013754 & 0.013341 & 0.009662 & 4.07 \mathrm{E}-05 & 0.000134 & 0.366234 & 9.67 \mathrm{E}-07 & 9.38 \mathrm{E}-06 & 9.1 \mathrm{E}-06 \\ 6.59 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}5.9944 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 6.36 \mathrm{E}-05 & 0.000297 & 1.255647 & 3.31 \mathrm{E}-06 & 1.8 \mathrm{E}-05 & 1.75 \mathrm{E}-05 & 2.45 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}5.9944 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 6.61 \mathrm{E}-05 & 0.000375 & 0.232399 & 6.19 \mathrm{E}-07 & 1.2 \mathrm{E}-05 & 1.16 \mathrm{E}-05 & 5.87 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}7.493 & 0.131479 & 0.345281 & 536.7629 & 0.001454 & 0.025045 & 0.024294 & 0.023055 & 0.000384 & 0.00101 & 1.569452 & 4.25 \mathrm{E}-06 & 7.32 \mathrm{E}-05 & 7.1 \mathrm{E}-05 & 6.74 \mathrm{E}-05\end{array}$
 $\left.\begin{array}{llllllllllllll}6 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 6.36 \mathrm{E}-05 & 0.000297 & 1.25682 & 3.32 \mathrm{E}-06 & 1.8 \mathrm{E}-05 & 1.75 \mathrm{E}-05\end{array}\right) .45 \mathrm{E}-05$ $\begin{array}{lllllllllllllllll}24 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000254 & 0.001188 & 5.027281 & 1.33 \mathrm{E}-05 & 7.21 \mathrm{E}-05 & 6.99 \mathrm{E}-05 & 9 & 99 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}24 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000254 & 0.001188 & 5.027281 & 1.33 \mathrm{E}-05 & 7.21 \mathrm{E}-05 & 6.99 \mathrm{E}-05 & 9.79 \mathrm{E}-05 \\ 24 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.02890 & 0.000334 & 0.000997 & 1.068549 & 29 E-06 & 8.13 E-05 & 7.88 E & 50\end{array}$ $\begin{array}{lllllllllllllllll}24 & 0.167834 & 0.50092 & 536.7479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 0.000334 & 0.000997 & 1.068549 & 2.9 \mathrm{E}-06 & 8.13 \mathrm{E}-05 & 7.88 \mathrm{E}-05 & 5.75 \mathrm{E}-05 \\ 24 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000254 & 0.001188 & 5.027281 & 1.33 \mathrm{E}-05 & 7.21 \mathrm{E}-05 & 6.99 \mathrm{E}-05 & 9.79 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}24 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000254 & 0.001188 & 5.027281 & 1.33 \mathrm{E}-05 & 7.21 \mathrm{E}-05 & 6.99 \mathrm{E}-05 \\ 24 & 9.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.00107 & 0.00154 & 0.289417 & 8.81 \mathrm{E}-07 & 0.00014 & 0.000136\end{array}$ $\begin{array}{llllllllllllll}24 & 2.567846 & 3.695226 & 694.5866 & 0.002114 & 0.33683 & 0.326726 & 0.479842 & 0.00107 & 0.00154 & 0.289417 & 8.81 \mathrm{E}-07 & 0.00014 & 0.000136 \\ 24 & 0.0002\end{array}$ $\begin{array}{llllllllllllllll}24 & 1.596653 & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.000887 & 0.00106 & 0.386306 & 1.11 \mathrm{E}-06 & 0.000126 & 0.000122 & 0.000127\end{array}$ $\begin{array}{lllllllllllllll}2.442 & 0.069639 & 0.226304 & 536.7988 & 0.001421 & 0.016409 & 0.015917 & 0.011077 & 1.94 \mathrm{E}-05 & 6.29 \mathrm{E}-05 & 0.149195 & 3.95 \mathrm{E}-07 & 4.56 \mathrm{E}-06 & 4.42 \mathrm{E}-06 & 3.08 \mathrm{E}-06 \\ 2.442 & & 0.0\end{array}$ $\begin{array}{lllllllllllllll}2.442 & 0.032003 & 0.140888 & 536.7963 & 0.001419 & 0.008755 & 0.008492 & 0.011426 & 1.52 \mathrm{E}-05 & 6.71 \mathrm{E}-05 & 0.255761 & 6.76 \mathrm{E}-07 & 4.17 \mathrm{E}-06 & 4.05 \mathrm{E}-06 & 5.44 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}2.442 & 0.169521 & 0.962846 & 596.1149 & 0.001587 & 0.030751 & 0.029829 & 0.01505 & 2.69 \mathrm{E}-05 & 0.000153 & 0.094675 & 2.52 \mathrm{E}-07 & 4.88 \mathrm{E}-06 & 4.74 \mathrm{E}-06 & 2.39 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}2.2 & 0.400345 & 0.911359 & 536.6653 & 0.001534 & 0.064774 & 0.062831 & 0.056727 & 0.000344 & 0.000782 & 0.460719 & 1.32 \mathrm{E}-06 & 5.56 \mathrm{E}-05 & 5.39 \mathrm{E}-05 & 4.87 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}2.2 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 2.33 \mathrm{E}-05 & 0.000109 & 0.460834 & 1.22 \mathrm{E}-06 & 6.61 \mathrm{E}-06 & 6.41 \mathrm{E}-06 & 8.97 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}37.02857 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000393 & 0.001833 & 7.756376 & 2.05 \mathrm{E}-05 & 0.000111 & 0.000108 & 0.000151\end{array}$

 $\begin{array}{llllllllllllllllllllll} & 0.0007468 & 0.010454 & 0.000458 & 0.002138 & 9.049105 & 2.39 \mathrm{E}-05 & 0.00013 & 0.000126 & 0.000176\end{array}$ $\begin{array}{lllllllllllllllllllll} & 0.0 .000126 & 0.000176\end{array}$ $\begin{array}{llllllllllllllllllll} & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 0.000458 & 0.002138 & 9.049105 & 2.39 \mathrm{E}-05 & 0.00013 & 0.000126 & 0.000176\end{array}$ $\begin{array}{lllllllllllllllllllllllllll} & 1.90781 & 695.3356 & 0.00199 & 0.226892 & 0.220085 & 0.227907 & 0.001597 & 0.001908 & 0.695351 & 1.99 E-06 & 0.000227 & 0.00022 & 0.00022\end{array}$ $\begin{array}{lllllllllllllll}2 & 0.167834 & 0.50092 & 5367479 & 0.001458 & 0.040823 & 0.039598 & 0.028906 & 2.78 \mathrm{E}-05 & 8.31 \mathrm{E}-05 & 0.089046 & 2.42 \mathrm{E}-07 & 6.77 \mathrm{E}-06 & 6.57 \mathrm{E}-06 & 4.8 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllllllllllllllll}4 & 0.027174 & 0.126836 & 536.7995 & 0.001416 & 0.007699 & 0.007468 & 0.010454 & 4.24 \mathrm{E}-05 & 0.000198 & 0.83788 & 2.21 \mathrm{E}-06 & 1.2 \mathrm{E}-05 & 1.17 \mathrm{E}-05 & 1.63 \mathrm{E}-05\end{array}$

factors were developed from the following models:
On-Road Vehicles: MOVES3.0.2, revised September 202
Non-Road Equipment: MOVES3.0.2 September 2021
In addition to the overall project size dimensions (e.g., Length and width) provided by the user, an additional 10 ft length and 10 ft width is added to account for disturbance areas. The number of employees is based on the higher of two methods: (1) number of equipment, and (2) multiply the project cost in million by 11. The average employee travels 30 miles round-trip from home to construction site each day
The average on-road material delivery round-trip distance per truck is 40 miles per day.
For calculating fugitive, re-entrained PM emissions from on-road and non-road material delivery and handling equipment, a nominal VMT of 5 miles is used for each vehicle per day. In deriving emission factors from NONROAD, the horsepower for each equipment represents the most popular in each equipment category. The total length of each modeled scenario is used to define the number of days associated with vehicle/equipment evaporative emissions. The choice of location and season are assumed to adequately represent differences in fuel characteristics affecting emissions.
Only two seasons (Summer and Winter) are used to represent all seasons.

$$
14 \text { U.S. Counties are used to represent all other counties in the U.S. (all other counties are mapped to the 14). }
$$

The default methods assume that all construction equipment use diesel as well as heavy-duty on-road vehicles, while passenger vehicles (including motorcycles) use gasoline.

$$
\begin{aligned}
& \text { Fugitive emissions are only modeled for: } \\
& \text { Asphalt drving }
\end{aligned}
$$

Unstabilized land and wind erosion
Material movement (unpaved roads)
Material movement (paved roads)
On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations. The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment. Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item. Two trips per day were assumed for each on-road material handling trucks. Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included. The following equipment are always modeled using diesel emission factors since gasol ine-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Asphalt Der
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
Celivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)

N20 ${ }^{9}$	MOVES ONROAD Emissions (tpy)								
	7	10	13	11	12	14	5	8	9
	CO	NOx	SO2	PM10	PM2.5	VOC	CO2	CH4	N2O
0.002802	0.002296	0.003946	5.69E-06	5.93E-05	5.45E-05	0.000164	1.704802	2E-05	3.02E-06
0.003286	0.020928	0.028372	5.64E-05	0.000413	0.00038	0.001421	16.85958	. 00252	$5.63 \mathrm{E}-05$
286	0.00186	0.002521	5.01E-0	7E-05	$3.37 \mathrm{E}-05$	0.000126	1.498292	$2.24 \mathrm{E}-05$	5.01E-06
0.003286	0.011162	0.015132	3.01E-05	0.00022	0.000203	0.000758	8.991919	135	05
. 001659	2.193749	0.039509	0.001728	0.001642	0.001452	0.04814	260.1043	0.005588	0.001432
0.002802	0.00784	0.013471	1.94E-05	0.000202	0.000186	0.00056	5.820082	6.83E-05	1.03E-05
0.003286	0.071462	0.096882	0.000192	0.001409	0.001297	0.004852	57.5704	0.000862	0.000192
6	0.0	0.00	1.71	0.000125	0.000115	0.000431	5.117176	7.66E-05	$1.71 \mathrm{E}-05$
0.003286	0.038113	0.05167	0.000103	0.000752	0.000691	0.002588	30.70414	0.00046	0.000103
0.001659	7.725812	0.139142	0.006085	0.005781	0.005114	0.169536	916.0196	1968	0.005043
0.003286	0.00766	0.010394	2.07E-05	0.000151	0.000139	0.000521	6.176388	9.24E-05	$2.06 \mathrm{E}-05$
0.001659	2.956792	0.053252	0.002329	0.002213	0.001957	0.064884	350.5754	0.00753	0.00193
0.00	0.00	0.00452	6.52E-06	6.79E-05	6.25E-05	0.0	1.952837	$2.29 \mathrm{E}-05$	06
0.003286	0.02398	0.03251	6.46E-05	0.000473	0.000435	0.001628	19.31842	0.000289	6.45E-05
0.003286	0.002132	0.00289	5.74E-06	4.2E-05	$3.87 \mathrm{E}-05$	0.000145	1.71729	2.57E-0	5.74E-06
0.003286	0.01279	0.01	3.45	0.000252	0.000232	0.000	10.3	. 00	05
0.001659	2.107908	0.037963	0.00166	0.001577	0.001395	0.046256	249.9265	. 0053	376
0.003286	0.003113	00422	-06	05	65E-05	0.0002	2.50	3.75	6
0.003286	0.001659	0.00225	4.47E-06	3.27E-05	3.01E-05	0.000113	1.336754	2E-05	47E-06
0.001659	2.813721	0.050675	0.002216	0.002106	0.001863	0.061745	333.6121	0.00716	0.001837
0.002802	0.000376	0.000647	9.34E-07	$9.72 \mathrm{E}-06$	8.94E-06	$2.69 \mathrm{E}-05$	0.279476	3.28E-06	4.94E-07
0.002802	0.000553	0.00095	1.37E-06	$1.43 \mathrm{E}-05$	1.31E-05	3.95E-05	0.41048	4.82E-0	7.26E-07
0.003286	0.005041	0.006834	$1.36 \mathrm{E}-05$	$9.94 \mathrm{E}-05$	9.15E-05	0.000342	4.061216	6.08E-0	$1.36 \mathrm{E}-05$
0.003286	0.000448	0.000608	1.21E-06	8.84E-06	8.13E-06	$3.04 \mathrm{E}-05$	0.361021	5.4E-06	1.21E-06
0.003286	0.002689	0.003645	7.24E-06	5.3E-05	4.88E-05	0.000183	2.166127	3.24E-05	7.24E-06
0.001659	1.394577	0.025116	0.001098	0.001044	0.000923	0.030603	165.3496	0.003553	0.00091
Totals	19.41565	0.6530	0.015715	0.018845	0.016829	0.436359	2454.445	0.051536	0.01

Austin Airport

Study Description
2028 Construction Schedule

EMISSIONS INVENTORY - DETAILS

Non-Road Sources
Units for Non-Greenhouse Gases Emission: Short Ton Units for Greenhouse Gases (CO2, CH4 , and N2O) Emission: M
$\begin{array}{lll}\text { Scenario IIYear } & \text { Project } & \text { Constructi Equipment } \\ \text { 1 } & 2028 \text { Taxiways } & \text { Asphalt Pla Asphalt Paver }\end{array}$ 2028 Taxiways Asphalt PlaDump Truck 2028 Taxiways Asphalt Pl:Other General Equipment 2028 Taxiways Asphalt PlıPickup Truck 2028 Taxiways Asphalt PlkRoller 2028 Taxiways Asphalt PléSkid Steer Loader 2028 Taxiways Asphalt Pla Surfacing Equipment (Grooving) 2028 Taxiways Clearing arChain Saw 2028 Taxiways Clearing arChipper/Stump Grinder 2028 Taxiways Clearing ar Pickup Truck 2028 Taxiways Drainage-Dozer 2028 Taxiways Drainage - Dump Truck 2028 Taxiways Drainage - Excavato 2028 Taxiways Drainage-Loader 2028 Taxiways Drainage - Other General Equipment 2028 Taxiways Drainage - Pickup Truck 2028 Taxiways Drainage - Roller 2028 Taxiways Drainage - Dump Truck 2028 Taxiways Drainage-Loader 2028 Taxiways Drainage - Other General Equipment 2028 Taxiways Drainage - Pickup Truck 2028 Taxiways Drainage - Tractors/Loader/Backhoe 2028 Taxiways Dust Contr Water Truck 2028 Taxiways ExcavationDozer 2028 Taxiways ExcavationDump Truck (12 cy) 2028 Taxiways ExcavationPickup Truck 2028 Taxiways ExcavationRoller 2028 Taxiways ExcavationDozer 2028 Taxiways ExcavationDump Truck (12 cy) 2028 Taxiways ExcavationExcavator 2028 Taxiways Excavation Pickup Truck 2028 Taxiways Excavation Roller 2028 Taxiways ExcavationScrape 2028 Taxiways ExcavationDozer 2028 Taxiways Fencing Concrete Truck 2028 Taxiways Fencing Dump Truck 2028 Taxiways Fencing Other General Equipment 2028 Taxiways Fencing Pickup Truck 2028 Taxiways Fencing Skid Steer Loader 2028 Taxiways Fencing Tractors/Loader/Backhoe 2028 Taxiways Grading Dozer 2028 Taxiways Grading Grader 2028 Taxiways Grading Roller啹 2028 Taxiways Hydroseec Off-Road Truck 2028 Taxiways Lighting Dump Truck 2028 Taxiways Lighting Loader 2028 Taxiways Lighting Other General Equipment 2028 Taxiways Lighting Pickup Truck 2028 Taxiways Lighting Skid Steer Loader 2028 Taxiways Lighting Tractors/Loader/Backhoe 2028 Taxiways Markings Flatbed Truck 2028 Taxiways Markings Other General Equipment 2028 Taxiways Markings Pickup Truck 2028 Taxiways Soil Erosio Other General Equipment 2028 Taxiways Soil Erosio Pickup Truck 2028 Taxiways Soil Erosio Pumps

MovesLoo Fuel Pavers175 Diesel Off-highw:Diesel Other Con Diesel Off-highw: Diesel Off-highwi Diesel Rollers100Diese
Skid Steer Diesel Skid Steer Diesel Other Con Diesel
Other Con Diesel Other Con Diesel Other Con Diesel Off-highw: Diese Crawler Tr Diesel
Off-highwiDiesel Off-highw: Diesel Excavators Diese Tractors/LLDiesel Other Con Diese Off-highw: Diese Rollers100Diesel Off-highw: Diesel Tractors/LD Diesel Other Con Diesel Off-highw: Diesel Tractors/LDiesel Off-highw: Diesel Crawler Tr Diesel Off-highw: Diesel Off-highw: Diesel Rollers100Diesel Crawler Tr Diesel Off-highwi Diesel Excavators Diesel Off-highw: Diesel Rollers100Diesel Scrapers6CDiesel Crawler Tr Diesel Off-highw:Diesel Off-highwiDiesel Off-highw: Diesel Other Con Diesel Off-highw: Diesel Skid Steer Diese Tractors/LD Diesel Crawler Tr Diesel Graders 30 Diesel Rollers100Diesel Other Con Diesel Off-highw: Diesel Off-highw: Diesel Tractors/LDiesel Other Con Diesel Off-highw: Diesel Skid Steer Diesel Tractors/LDDiesel Off-highw: Diesel Other Con Diesel Off-highw: Diesel Other Con Diesel Off-highw: Diesel Other Con Diesel

 $\begin{array}{llllllllllllllll}175 & 0.59 & 5.2485 & 7.28 \mathrm{E}-02 & 2.27 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 4.35 \mathrm{E}-05 & 0.000135 & 0.320658 & 8.5 \mathrm{E}-07 & 1.03 \mathrm{E}-05 & 1 \mathrm{E}-05 \\ 6.89 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}175 & 0.59 & 5.2485 & 7.28 \mathrm{E}-02 & 2.27 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 4.35 \mathrm{E}-05 & 0.000135 & 0.320658 & 8.5 \mathrm{E}-07 & 1.03 \mathrm{E}-05 & 1 \mathrm{E}-05 & 6.89 \mathrm{E}-06 \\ 600 & 0.59 & 18.90287 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000173 & 0.000877 & 3.959596 & 1.04 \mathrm{E}-05 & 5.2 \mathrm{E}-05 & 5.04 \mathrm{E}-05 & 7.38 \mathrm{E}-05\end{array}$ $\begin{array}{llrllllllllllllll}600 & 0.59 & 18.90287 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-0 & 1.00 \mathrm{E}-02 & 0.000173 & 0.000877 & 3.959596 & 1.04 \mathrm{E}-00 & 5.2 \mathrm{E}-05 & 5.04 \mathrm{E}-05 & 7.38 \mathrm{E}-05 \\ 175 & 0.43 & 10.497 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000127 & 0.000367 & 0.467367 & 1.2 \mathrm{E}-06 & 3.1 \mathrm{E}-05 & 3 \mathrm{E}-05 & 2.16 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}175 & 0.43 & 10.497 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000127 & 0.000367 & 0.467367 & 1.26 \mathrm{E}-06 & 3.1 \mathrm{E}-05 & 3 \mathrm{E}-05 & 2.16 \mathrm{E}-05 \\ 600 & 0.59 & 5.2485 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 4.79 \mathrm{E}-05 & 0.000244 & 1.099407 & 2.9 \mathrm{E}-06 & 1.44 \mathrm{E}-05 & 1.4 \mathrm{E}-05 & 2.05 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}600 & 0.59 & 5.2485 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 4.79 \mathrm{E}-05 & 0.000244 & 1.099407 & 2.9 \mathrm{E}-06 & 1.44 \mathrm{E}-05 & 1.4 \mathrm{E}-05 & 2.05 \mathrm{E}-05 \\ 100 & 0.59 & 5.2485 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 4.48 \mathrm{E}-05 & 0.000317 & 0.203484 & 5.4 \mathrm{E}-07 & 8.55 \mathrm{E}-06 & 8.3 \mathrm{E}-06 & 4.21 \mathrm{E}-06\end{array}$ \begin{tabular}{rrrrrrrrrrrrrrrr}
100 \& 0.59 \& 5.2485 \& $1.31 \mathrm{E}-01$ \& $9.30 \mathrm{E}-01$ \& $5.96 \mathrm{E}+02$ \& $1.58 \mathrm{E}-03$ \& $2.51 \mathrm{E}-02$ \& $2.43 \mathrm{E}-02$ \& $1.23 \mathrm{E}-02$ \& $4.48 \mathrm{E}-05$ \& 0.000317 \& 0.203484 \& $5.4 \mathrm{E}-07$ \& $8.55 \mathrm{E}-06$ \& $8.3 \mathrm{E}-06$

75 \& 0.21 \& 5.2485 \& $2.44 \mathrm{E}+00$ \& $3.62 \mathrm{E}+00$ \& $6.95 \mathrm{E}+02$ \& $2.10 \mathrm{E}-03$ \& $3.16 \mathrm{E}-01$ \& $3.07 \mathrm{E}-01$ \& $4.51 \mathrm{E}-01$ \& 0.000222 \& 0.00033 \& 0.0633 \& $1.91 \mathrm{E}-07$ \& $2.88 \mathrm{E}-05$ \& $2.8 \mathrm{E}-05$

\hline

0.21 \& 5.2485 \& $2.44 \mathrm{E}+00$ \& $3.62 \mathrm{E}+00$ \& $6.95 \mathrm{E}+02$ \& $2.10 \mathrm{E}-03$ \& $3.16 \mathrm{E}-01$ \& $3.07 \mathrm{E}-01$ \& $4.51 \mathrm{E}-01$ \& 0.000222 \& 0.00033 \& 0.0633 \& $1.91 \mathrm{E}-07$ \& $2.88 \mathrm{E}-05$ \& $2.8 \mathrm{E}-05$

0.59 \& 6.71808 \& $1.49 \mathrm{E}+00$ \& $3.76 \mathrm{E}+00$ \& $5.95 \mathrm{E}+02$ \& $219 \mathrm{E}-05$

\hline
\end{tabular} $\begin{array}{rrrrrrrrrrrrrr}0.59 & 6.71808 & 1.49 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 0.000163 & 0.000411 & 0.065009 & 2.39 \mathrm{E}-07 & 1.86 \mathrm{E}-05 \\ 0.7 & 14.4 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.84 \mathrm{E}-05 \\ 0.0 & 14.05 & 0.000301 & 0.000511 & 0.072572 & 2.67 \mathrm{E}-07 & 2.92 \mathrm{E}-05 & 2.83 \mathrm{E}-05 & 0.000102\end{array}$ $\begin{array}{rrrllllllllllll}0.7 & 14.4 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 0.000301 & 0.000511 & 0.072572 & 2.67 \mathrm{E}-07 & 2.92 \mathrm{E}-05 & 2.83 \mathrm{E}-05 \\ 0.000102 \\ 0.43 & 14.4 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000222 & 0.000757 & 0.406852 & 1.1 \mathrm{E}-06 & 3.45 \mathrm{E}-05 & 3.35 \mathrm{E}-05 \\ 2.01 \mathrm{E}-05\end{array}$

0.59	19.2	$2.34 \mathrm{E}-02$	$1.19 \mathrm{E}-01$	$5.37 \mathrm{E}+02$	$1.42 \mathrm{E}-03$	$7.05 \mathrm{E}-03$	$6.84 \mathrm{E}-03$	$1.00 \mathrm{E}-02$	0.000175	0.000891	4.021836	$1.06 \mathrm{E}-05$	$5.28 \mathrm{E}-05$	$5.12 \mathrm{E}-05$
.59	45.152	$6.40 \mathrm{E}-02$	$2.08 \mathrm{E}-01$	$5.37 \mathrm{E}+02$	$1.42 \mathrm{E}-03$	$1.49 \mathrm{E}-02$	$1.44 \mathrm{E}-02$	$1.03 \mathrm{E}-02$	0.000329	0.00107	2.758594	$7.29 \mathrm{E}-06$	$7.65 \mathrm{E}-05$	$7.42 \mathrm{E}-05$
$5.29 \mathrm{E}-05$														
0.59	.45													

 $\begin{array}{llllllllllllllll}0.59 & 45.152 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.002918 & 0.005615 & 3.217653 & 9.1 \mathrm{E}-06 & 0.000679 & 0.000659 & 0.00073\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 45.152 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000546 & 0.001579 & 2.010341 & 5.43 \mathrm{E}-06 & 0.000133 & 0.000129 & 9.28 \mathrm{E}-05 \\ 0.59 & 45.152 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000412 & 0.002096 & 9.458018 & 2.49 \mathrm{E}-05 & 0.000124 & 0.00012 & 0.000176\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 45.152 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000412 & 0.002096 & 9.458018 & 2.49 \mathrm{E}-05 & 0.000124 & 0.00012 & 0.000176 \\ 0.59 & 45.152 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000386 & 0.00273 & 1.750539 & 4.64 \mathrm{E}-06 & 7.36 \mathrm{E}-05 & 7.14 \mathrm{E}-05 & 3.62 \mathrm{E}-05\end{array}$ $\begin{array}{lrrrrrrrrrrrrr}0.59 & 45.152 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000386 & 0.00273 & 1.750539 & 4.64 \mathrm{E}-06 & 7.36 \mathrm{E}-05 \\ 7 & 7.14 \mathrm{E}-05 & 3.62 \mathrm{E}-05 \\ 0.59 & 25 & \end{array}$ $\begin{array}{lllllllllllllll}0.59 & 25.08444 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000229 & 0.001164 & 5.254454 & 1.39 \mathrm{E}-05 & 6.9 \mathrm{E}-05 & 6.69 \mathrm{E}-05 \\ 9.8 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 25.08444 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.001621 & 0.003119 & 1.787585 & 5.06 \mathrm{E}-06 & 0.000377 & 0.000366 & 0.000406\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 25.08444 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000303 & 0.000877 & 1.116856 & 3.02 \mathrm{E}-06 & 7.4 \mathrm{E}-05 & 7.18 \mathrm{E}-05 & 5.16 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 25.08444 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000229 & 0.001164 & 5.254454 & 1.39 \mathrm{E}-05 & 6.9 \mathrm{E}-05 & 6.69 \mathrm{E}-05 & 9.8 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.21 & 25.08444 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000806 & 0.001029 & 0.403816 & 1.14 \mathrm{E}-06 & 0.000116 & 0.000112 & 0.000114\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 2160 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.019722 & 0.10025 & 452.4566 & 0.001193 & 0.005942 & 0.005764 & 0.008437\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 23.32667 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.00017 & 0.000553 & 1.425159 & 3.77 \mathrm{E}-06 & 3.95 \mathrm{E}-05 & 3.83 \mathrm{E}-05 & 2.73 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 23.32667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000213 & 0.001083 & 4.886252 & 1.29 \mathrm{E}-05 & 6.42 \mathrm{E}-05 & 6.22 \mathrm{E}-05 & 9.11 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 23.32667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000213 & 0.001083 & 4.886252 & 1.29 \mathrm{E}-05 & 6.42 \mathrm{E}-05 & 6.22 \mathrm{E}-05 & 9.11 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 10.76615 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 9.2 \mathrm{E}-05 & 0.000651 & 0.417403 & 1.11 \mathrm{E}-06 & 1.75 \mathrm{E}-05 & 1.7 \mathrm{E}-05 & 8.64 \mathrm{E}-06\end{array}$
 $\begin{array}{lllllllllllllllllll}0.59 & 46.65333 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000426 & 0.002165 & 9.772503 & 2.58 \mathrm{E}-05 & 0.000128 & 0.000124 & 0.000182\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 13.996 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 8.79 \mathrm{E}-05 & 0.000289 & 0.855101 & 2.26 \mathrm{E}-06 & 2 \mathrm{E}-05 & 1.94 \mathrm{E}-05 & 1.44 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 13.996 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000128 & 0.00065 & 2.931751 & 7.73 \mathrm{E}-06 & 3.85 \mathrm{E}-05 & 3.73 \mathrm{E}-05 & 5.47 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 13.996 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.00012 & 0.000846 & 0.542624 & 1.44 \mathrm{E}-06 & 2.28 \mathrm{E}-05 & 2.21 \mathrm{E}-05 & 1.12 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 17.495 & 1.10 \mathrm{E}-01 & 3.0 \mathrm{EE}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 2.15 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 2.04 \mathrm{E}-02 & 0.00075 & 0.002048 & 3.66448 & 9.87 \mathrm{E}-06 & 0.000147 & 0.000143 & 0.00013\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.59 & 6.586353 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 4.8 \mathrm{E}-05 & 0.000156 & 0.402398 & 1.06 \mathrm{E}-06 & 1.12 \mathrm{E}-05 & 1.08 \mathrm{E}-05 & 7.72 \mathrm{E}-06\end{array}$

 0.595 .795 6. $\begin{array}{lllllllllllllllll}0.59 & 5.795 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 4.22 \mathrm{E}-05 & 0.000137 & 0.35405 & 9.36 \mathrm{E}-07 & 9.82 \mathrm{E}-06 & 9.53 \mathrm{E}-06 & 6.79 \mathrm{E}-06\end{array}$

 | 0.59 | 5.795 | $1.31 \mathrm{E}-01$ | $9.30 \mathrm{E}-01$ | $5.96 \mathrm{E}+02$ | $1.58 \mathrm{E}-03$ | $2.51 \mathrm{E}-02$ | $2.43 \mathrm{E}-02$ | $1.23 \mathrm{E}-02$ | $4.95 \mathrm{E}-05$ | 0.00035 | 0.224672 | $5.96 \mathrm{E}-07$ | $9.44 \mathrm{E}-06$ | $9.16 \mathrm{E}-06$ | $4.65 \mathrm{E}-06$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllllllll}0.59 & 5.2207 & 3.46 \mathrm{E}-01 & 8.05 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.52 \mathrm{E}-03 & 5.65 \mathrm{E}-02 & 5.48 \mathrm{E}-02 & 4.96 \mathrm{E}-02 & 0.000705 & 0.001641 & 1.093348 & 3.09 \mathrm{E}-06 & 0.000115 & 0.000112 & 0.000101\end{array}$

 $\begin{array}{llllllllllllllll}0.59 & 19.04 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000174 & 0.000884 & 3.988321 & 1.05 \mathrm{E}-05 & 5.24 \mathrm{E}-05 & 5.08 \mathrm{E}-05 & 7.44 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 19.04 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.00123 & 0.002368 & 1.356841 & 3.84 \mathrm{E}-06 & 0.000286 & 0.000278 & 0.000308\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}0.21 & 19.04 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.000805 & 0.001197 & 0.229633 & 6.95 \mathrm{E}-07 & 0.000105 & 0.000101 & 0.000149\end{array}$
 $\begin{array}{llllllllllllllllllllllll}0.59 & 86.46171 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000789 & 0.004013 & 18.11119 & 4.77 \mathrm{E}-05 & 0.000238 & 0.000231 & 0.000338\end{array}$ $\begin{array}{llllllllllllllllllllll}0.43 & 86.46171 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.001046 & 0.003023 & 3.849608 & 1.04 \mathrm{E}-05 & 0.000255 & 0.000247 & 0.000178\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 86.46171 & 2.34 E-02 & 1.19 E-01 & 5.37 E+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000789 & 0.004013 & 18.11119 & 4.77 \mathrm{E}-05 & 0.000238 & 0.000231 & 0.000338\end{array}$ $\begin{array}{lllllllllllllll}0.43 & 4.8 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 5.81 \mathrm{E}-05 & 0.000168 & 0.213714 & 5.77 \mathrm{E}-07 & 1.42 \mathrm{E}-05 & 1.37 \mathrm{E}-05 \\ 9.87 \mathrm{E}-06\end{array}$ $0 . \begin{array}{lllllllllllllllllll}0.59 & 9.6 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 8.77 \mathrm{E}-05 & 0.000446 & 2.010918 & 5.3 \mathrm{E}-06 & 2.64 \mathrm{E}-05 & 2.56 \mathrm{E}-05 & 3.75 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 4.8 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 6.16 \mathrm{E}-05 & 0.000105 & 0.01486 & 5.46 \mathrm{E}-08 & 5.97 \mathrm{E}-06 & 5.79 \mathrm{E}-06 & 2.1 \mathrm{E}-05\end{array}$

2028 Taxiway	osio	tors/LD	100
2028 Taxiways	Subbase P Dozer	Crawler Tr Diesel	75
2028 Taxiways	Subbase P Dump Truck (12 cy)	Off-highw: Diesel	600
2028 Taxiways	Subbase P Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Subbase PRoller	Rollers100 Diesel	100
2028 Taxiways	Topsoil Pla Dozer	Crawler Tr Diesel	175
2028 Taxiways	Topsoil Pla Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Topsoil Ple Pickup Truck	Off-highw Diesel	600
2028 Taxiways	Asphalt Pli Asphalt Paver	Pavers175 Diesel	175
2028 Taxiways	Asphalt Pli Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Asphalt Pl: Other General Equipment	Other Con Diesel	175
2028 Taxiways	Asphalt Pli Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Asphalt Pli Roller	Rollers100 Diesel	100
2028 Taxiways	Asphalt Pl: Skid Steer Loader	Skid Steer Diesel	75
2028 Taxiways	Asphalt Pl: Surfacing Equipment (Grooving)	Other Con Diesel	25
2028 Taxiways	Clearing al Chain Saw	Other Con Diesel	11
2028 Taxiways	Clearing alChipper/Stump Grinder	Other Con Diesel	100
2028 Taxiways	Clearing al Pickup Truck	Off-highw: Diesel	O
2028 Taxiways	Concrete FAir Compressor	Other Con Diesel	00
2028 Taxiways	Concrete F Concrete Saws	Other Con Diesel	40
2028 Taxiways	Concrete FConcrete Truck	Off-highw: Diesel	600
2028 Taxiways	Concrete FOther General Equipment	Other Con Diesel	175
2028 Taxiways	Concrete PPickup Truck	Off-highw: Diesel	600
2028 Taxiways	Concrete FRubber Tired Loader	Tractors/LDiesel	175
2028 Taxiways	Concrete FSlip Form Paver	Pavers175 Diesel	175
2028 Taxiways	Concrete FSurfacing Equipment (Grooving)	Other Con Diesel	25
2028 Taxiways	Drainage - Dozer	Crawler Tr Diesel	175
2028 Taxiways	Drainage - Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Drainage-Excavator	Excavators Diesel	175
2028 Taxiways	Drainage-Loader	Tractors/LDiesel	175
2028 Taxiways	Drainage - Other General Equipment	Other Con Diesel	175
2028 Taxiways	Drainage - Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Drainage - Roller	Rollers100 Diesel	100
2028 Taxiways	Drainage - Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Drainage - Loader	Tractors/LDiesel	175
2028 Taxiways	Drainage-Other General Equipment	Other Con Diesel	175
2028 Taxiways	Drainage - Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Drainage-Tractors/Loader/Backhoe	Tractors/LDiesel	100
2028 Taxiways	Dust Cont Water Truck	Off-highw: Diesel	600
2028 Taxiways	Excavatior Dozer	Crawler Tr Diesel	175
2028 Taxiways	Excavatior Dump Truck (12 cy)	Off-highw: Diesel	600
2028 Taxiways	Excavatior Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Excavatior Roller	Rollers100 Diesel	100
2028 Taxiways	Excavatior Dozer	Crawler Tr Diesel	175
2028 Taxiways	Excavatior Dump Truck (12 cy)	Off-highw: Diesel	600
2028 Taxiways	Excavatior Excavator	Excavators Diesel	175
2028 Taxiways	Excavatior Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Excavatior Roller	Rollers100 Diesel	100
2028 Taxiways	Excavatior Scraper	Scrapers6(Diesel	600
2028 Taxiways	Excavatior Dozer	Crawler Tr Diesel	175
2028 Taxiways	Fencing Concrete Truck	Off-highw: Diesel	600
2028 Taxiways	Fencing Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Fencing Other General Equipment	Other Con Diesel	175
2028 Taxiways	Fencing Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Fencing Skid Steer Loader	Skid Steer Diesel	75
2028 Taxiways	Fencing Tractors/Loader/Backhoe	Tractors/LD Diesel	100
2028 Taxiways	Grading Dozer	Crawler Tr Diesel	175
2028 Taxiways	Grading Grader	Graders30 Diesel	300
2028 Taxiways	Grading Roller	Rollers100 Diesel	100
2028 Taxiways	Hydroseec Hydroseeder	Other Con Diesel	600
2028 Taxiways	Hydroseec Off-Road Truck	Off-highw: Diesel	600
2028 Taxiways	Lighting Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Lighting Loader	Tractors/LDiesel	175
2028 Taxiways	Lighting Other General Equipment	Other Con Diesel	175
2028 Taxiways	Lighting Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Lighting Skid Steer Loader	Skid Steer Diesel	75
2028 Taxiways	Lighting Tractors/Loader/Backhoe	Tractors/LDiesel	100
2028 Taxiways	Markings Flatbed Truck	Off-highw: Diesel	600
2028 Taxiways	Markings Other General Equipment	Other Con Diesel	175
2028 Taxiways	Markings Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Soil Erosio Other General Equipment	Other Con Diesel	175
2028 Taxiways	Soil Erosio Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Soil Erosio Pumps	Other Con Diesel	11
2028 Taxiways	Soil Erosio Tractors/Loader/Backhoe	Tractors/LDiesel	100
2028 Taxiways	Subbase P Dozer	Crawler Tr Diesel	175
2028 Taxiways	Subbase P Dump Truck (12 cy)	Off-highw: Diesel	600
2028 Taxiways	Subbase P Pickup Truck	Off-highw: Diesel	600
2028 Taxiways	Subbase P Roller	Rollers100 Diesel	100
2028 Taxiways	Topsoil Ple Dozer	Crawler Tr Diesel	175
2028 Taxiways	Topsoil Pla Dump Truck	Off-highw: Diesel	600
2028 Taxiways	Topsoil Pla Pickup Truck	Off-highw: Diesel	600
2028 Demolitior	Concrete LExcavator with Bucket	Excavators Diesel	175
2028 Demolitior	Concrete EExcavator with Hoe Ram	Excavators Diesel	175
2028 Demolitior	Concrete CPickup Truck	Off-highw: Diesel	600

0.21
$\begin{array}{llllllllllllllll}0.21 & 4.8 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000154 & 0.000197 & 0.077272 & 2.19 \mathrm{E}-07 & 2.21 \mathrm{E}-05 & 2.15 \mathrm{E}-05 & 2.18 \mathrm{E}-0\end{array}$
 $\begin{array}{llllllllllllllllll}0.59 & 8.839579 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 8.07 \mathrm{E}-05 & 0.00041 & 1.851632 & 4.88 \mathrm{E}-06 & 2.43 \mathrm{E}-05 & 2.36 \mathrm{E}-05 & 3.45 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllll}0.59 & 12.87733 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 9.38 \mathrm{E}-05 & 0.000305 & 0.78675 & 2.08 \mathrm{E}-06 & 2.18 \mathrm{E}-05 & 2.12 \mathrm{E}-05 & 1.51 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 12.87733 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000118 & 0.000598 & 2.697423 & 7.11 \mathrm{E}-06 & 3.54 \mathrm{E}-05 & 3.44 \mathrm{E}-05 & 5.03 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0.59 & 17.922 & 7.28 \mathrm{E}-02 & 2 & 27 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 0.000149 & 0.000462 & 1.094948 & 29 \mathrm{E}-06 & 3.52 \mathrm{E}-05 & 3.44 \mathrm{E}-05 & 2.035 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 17.922 & 7.28 \mathrm{E}-02 & 2.27 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 0.000149 & 0.000462 & 1.094948 & 2.9 \mathrm{E}-06 & 3.52 \mathrm{E}-05 & 3.42 \mathrm{E}-05 & 2.35 \mathrm{E}-05\end{array}$

 $\begin{array}{llllllllllllllll}0.59 & 17.922 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000153 & 0.001084 & 0.694834 & 1.84 \mathrm{E}-06 & 2.92 \mathrm{E}-05 & 2.83 \mathrm{E}-05 & 1.44 \mathrm{E}-05 \\ 0.21 & 17.922 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.000758 & 0.001127 & 0.216149 & 6.54 \mathrm{E}-07 & 9.84 \mathrm{E}-05 & 9.55 \mathrm{E}-05 & 0.00014\end{array}$ $\begin{array}{llllllllllllllll}0.21 & 17.922 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.000758 & 0.001127 & 0.216149 & 6.54 \mathrm{E}-07 & 9.84 \mathrm{E}-05 & 9.55 \mathrm{E}-05 & 0.00014 \\ 0.59 & 22.94016 & 1.49 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 0.000555 & 0.001403 & 0.221984 & 8.16 \mathrm{E}-07 & 6.35 \mathrm{E}-05 & 6.16 \mathrm{E}-05 & 0.00013\end{array}$ $\begin{array}{crrrrrrrrrrrrr}0.59 & 22.94016 & 1.49 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 0.000555 & 0.001403 & 0.221984 & 8.16 \mathrm{E}-07 & 6.35 \mathrm{E}-05 \\ 0.16 \mathrm{E}-05 & 0.000131 \\ 0.7 & 50.4 & 246 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 218 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 0.001052 & 0.00179 & 0.254001 & 9.34 \mathrm{E}-07 & 0.000102\end{array}$ $\begin{array}{rrrrrrrrrrrrrrr}0.7 & 50.4 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 0.001052 & 0.00179 & 0.254001 & 9.34 \mathrm{E}-07 & 0.000102 & 9.9 \mathrm{E}-05 \\ 0.43 & 50.4 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-0 & 2.0458 \\ 0.4 & 6.04 \mathrm{E}-02 & 0.000779 & 0.002651 & 1.423983 & 3.85-06 & 0.000121 & 0.000117 & 7 & 702 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 50.4 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000779 & 0.002651 & 1.423983 & 3.85 \mathrm{E}-06 & 0.000121 & 0.000117 & 7.02 \mathrm{E}-05 \\ 0.59 & 67.2 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000614 & 0.003119 & 14.07643 & 3.71 \mathrm{E}-05 & 0.000185 & 0.000179 & 0.000262\end{array}$ $\begin{array}{lrllllllllllllllll}0.59 & 67.2 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000614 & 0.003119 & 14.07643 & 3.71 \mathrm{E}-05 & 0.000185 & 0.000179 & 0.000262\end{array}$ $\begin{array}{llllllllllllllll}0.43 & 47.792 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000738 & 0.002514 & 1.350298 & 3.65 \mathrm{E}-06 & 0.000115 & 0.000111 & 6.66 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 47.792 & 2.79 \mathrm{E}-01 & 2.53 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.57 \mathrm{E}-03 & 2.05 \mathrm{E}-02 & 1.98 \mathrm{E}-02 & 9.25 \mathrm{E}-02 & 0.000347 & 0.003144 & 0.740856 & 1.95 \mathrm{E}-06 & 2.54 \mathrm{E}-05 & 2.47 \mathrm{E}-05 & 0.000115\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 199.1333 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001818 & 0.009242 & 41.71258 & 0.00011 & 0.000548 & 0.000531 & 0.000778\end{array}$ $\begin{array}{llllllllllllllllllllll}0.43 & 95.584 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.001156 & 0.003342 & 4.255767 & 1.15 \mathrm{E}-05 & 0.000282 & 0.000273 & 0.000197\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 143.376 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001309 & 0.006654 & 30.03306 & 7.92 \mathrm{E}-05 & 0.000394 & 0.000383 & 0.00056\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0.59 & 47.792 & 7.28 \mathrm{E}-02 & 2.27 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 0.000396 & 0.001233 & 2.919862 & 7.74 \mathrm{E}-06 & 9.39 \mathrm{E}-05 & 9.11 \mathrm{E}-05 & 6.27 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 47.792 & 1.49 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 0.001156 & 0.002924 & 0.462467 & 1.7 \mathrm{E}-06 & 0.000132 & 0.000128 & 0.000273\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 172.544 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.001256 & 0.004089 & 10.5417 & 2.79 \mathrm{E}-05 & 0.000292 & 0.000284 & 0.000202\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 172.544 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001575 & 0.008008 & 36.1429 & 9.53 \mathrm{E}-05 & 0.000475 & 0.00046 & 0.000674\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 172.544 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.001084 & 0.00356 & 10.54177 & 2.78 \mathrm{E}-05 & 0.000247 & 0.000239 & 0.000178\end{array}$ $\begin{array}{lllllllllllllllllllll}0.59 & 172.544 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.011151 & 0.021457 & 12.29595 & 3.48 \mathrm{E}-05 & 0.002595 & 0.002517 & 0.002791\end{array}$ $\begin{array}{lllllllllllllllllll}0.43 & 172.544 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.002087 & 0.006033 & 7.682322 & 2.08 \mathrm{E}-05 & 0.000509 & 0.000494 & 0.000355\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 172.544 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001575 & 0.008008 & 36.1429 & 9.53 \mathrm{E}-05 & 0.000475 & 0.00046 & 0.00067\end{array}$

 0.59

 $\begin{array}{lllllllllllllllllllll}0.59 & 79.65333 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000727 & 0.003697 & 16.68503 & 4.4 \mathrm{E}-05 & 0.000219 & 0.000213 & 0.000311\end{array}$ $\begin{array}{lrrrrrrrrrrrrr}0.59 & 36.76308 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000314 & 0.002223 & 1.425301 & 3.78 \mathrm{E}-06 & 5.99 \mathrm{E}-05 \\ 5.81 \mathrm{E}-05 & 2.95 \mathrm{E}-05 \\ 0.59 & 59.74 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000435 & 0.001416 & 3.649858 & 9.65 \mathrm{E}-06 & 0.000101\end{array}$ $\begin{array}{lrllllllllllllll}0.59 & 59.74 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000435 & 0.001416 & 3.649858 & 9.65 \mathrm{E}-06 & 0.000101 & 9.82 \mathrm{E}-05 & 7 \mathrm{E}-0.5\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 159.3067 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001455 & 0.007394 & 33.37007 & 8.8 \mathrm{E}-05 & 0.000438 & 0.000425 & 0.000622\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 47.792 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.0003 & 0.000986 & 2.919905 & 7.7 \mathrm{E}-06 & 6.83 \mathrm{E}-05 & 6.63 \mathrm{E}-05 & 4.92 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 47.792 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000436 & 0.002218 & 10.01102 & 2.64 \mathrm{E}-05 & 0.000131 & 0.000128 & 0.00018\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 47.792 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000408 & 0.00289 & 1.852891 & 4.92 \mathrm{E}-06 & 7.79 \mathrm{E}-05 & 7.55 \mathrm{E}-05 & 3.83 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 59.74 & 1.10 \mathrm{E}-01 & 3.00 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 2.15 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 2.04 \mathrm{E}-02 & 0.002562 & 0.006994 & 12.51306 & 3.37 \mathrm{E}-05 & 0.000502 & 0.000487 & 0.000476\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 22.49035 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000164 & 0.000533 & 1.374064 & 3.63 \mathrm{E}-06 & 3.81 \mathrm{E}-05 & 3.7 \mathrm{E}-05 \\ 2.63 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 59.8 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000546 & 0.002775 & 12.52634 & 3.3 \mathrm{E}-05 & 0.000165 & 0.00016 & 0.000234\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 239.2 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.002184 & 0.011102 & 50.10537 & 0.000132 & 0.000658 & 0.000638 & 0.000934\end{array}$ $\begin{array}{llllllllllllllllllll}0.43 & 239.2 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.002893 & 0.008364 & 10.6501 & 2.88 \mathrm{E}-05 & 0.000705 & 0.000684 & 0.000492\end{array}$

 $\begin{array}{lllllllllllllllllll}0.21 & 239.2 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.007689 & 0.009813 & 3.850704 & 1.09 \mathrm{E}-05 & 0.001102 & 0.001069 & 0.001084\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 20.3494 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000148 & 0.000482 & 1.243261 & 3.29 \mathrm{E}-06 & 3.45 \mathrm{E}-05 & 3.35 \mathrm{E}-05 & 2.38 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 20.3494 & 2.80 \mathrm{E}-02 & 1.31 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 8.01 \mathrm{E}-03 & 7.77 \mathrm{E}-03 & 1.08 \mathrm{E}-02 & 0.000111 & 0.00052 & 2.131294 & 5.63 \mathrm{E}-06 & 3.18 \mathrm{E}-05 & 3.08 \mathrm{E}-05 & 4.31 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 20.3494 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000174 & 0.00123 & 0.788944 & 2.09 \mathrm{E}-06 & 3.32 \mathrm{E}-05 & 3.22 \mathrm{E}-05 & 1.63 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 20.3494 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000174 & 0.00123 & 0.788944 & 2.09 \mathrm{E}-06 & 3.32 \mathrm{E}-05 & 3.22 \mathrm{E}-05 & 1.63 \mathrm{E}-05 \\ 0.59 & 18.3328 & 3.46 \mathrm{E}-01 & 8.05 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.52 \mathrm{E}-03 & 5.65 \mathrm{E}-02 & 5.48 \mathrm{E}-02 & 4.96 \mathrm{E}-02 & 0.002475 & 0.005762 & 3.839356 & 1.09 \mathrm{E}-05 & 0.000404 & 0.000392 & 0.000355\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 18.3328 & 3.46 \mathrm{E}-01 & 8.05 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.52 \mathrm{E}-03 & 5.65 \mathrm{E}-02 & 5.48 \mathrm{E}-02 & 4.96 \mathrm{E}-02 & 0.002475 & 0.005762 & 3.839356 & 1.09 \mathrm{E}-05 & 0.000404 & 0.000392 & 0.00035 \\ 0.59 & 18.3328 & 234 \mathrm{E}-02 & 119 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.0 \mathrm{E}-02 & 0.000167 & 0.000851 & 3.840183 & 1.01 \mathrm{E}-05 & 5.04 \mathrm{E}-05 & 4.89 \mathrm{E}-05 & 7.16 \mathrm{E}-05\end{array}$ $\begin{array}{lrrrrrrrrrrrrrr}0.59 & 18.3328 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000167 & 0.000851 & 3.840183 & 1.01 \mathrm{E}-05 & 5.04 \mathrm{E}-05 & 4.89 \mathrm{E}-05 \\ 0.59 & 72.168 & 234 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000658 & 0.003345 & 15.09864 & 3.98 \mathrm{E}-05 & 0.000198 & 0.000192\end{array}$ $\begin{array}{lllllllllllllllllll}0.59 & 72.08 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000658 & 0.003345 & 15.09864 & 3.98 \mathrm{E}-05 & 0.000198 & 0.000192 & 0.00028\end{array}$ $\begin{array}{llllllllllllllllllll}0.59 & 72.08 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.004658 & 0.008963 & 5.136614 & 1.45 \mathrm{E}-05 & 0.001084 & 0.001051 & 0.001166\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}0.59 & 72.08 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000658 & 0.003345 & 15.09864 & 3.98 \mathrm{E}-05 & 0.000198 & 0.000192 & 0.00028\end{array}$

 $\begin{array}{lllllllllllllllll}0.59 & 295.2411 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.002696 & 0.013703 & 61.84435 & 0.000163 & 0.000812 & 0.000788 & 0.001153\end{array}$ $\begin{array}{lllllllllllllllllll}0.43 & 295.2411 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.003571 & 0.010323 & 13.14527 & 3.55 \mathrm{E}-05 & 0.000871 & 0.000844 & 0.000607 \\ 0.59 & 295.2411 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.002696 & 0.013703 & 61.84435 & 0.000163 & 0.000812 & 0.000788 & 0.001153\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 295.2411 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.002696 & 0.013703 & 61.84435 & 0.000163 & 0.000812 & 0.000788 & 0.001153 \\ 0.43 & 16.8 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000203 & 0.000587 & 0.748001 & 2.02 \mathrm{E}-06 & 4.95 \mathrm{E}-05 & 4.81 \mathrm{E}-05 & 3.45 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.43 & 16.8 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000203 & 0.000587 & 0.748001 & 2.02 \mathrm{E}-06 & 4.95 \mathrm{E}-05 & 4.81 \mathrm{E}-05 \\ 3.45 \mathrm{E}-05\end{array}$
 $\begin{array}{lllllllllllllllll}0.43 & 16.8 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 0.000215 & 0.000366 & 0.05201 & 1.91 \mathrm{E}-07 & 2.09 \mathrm{E}-05 & 2.03 \mathrm{E}-05 & 7.34 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.21 & 16.8 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.00054 & 0.000689 & 0.270451 & 7.66 \mathrm{E}-07 & 7.74 \mathrm{E}-05 & 7.51 \mathrm{E}-05 & 7.62 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 30.18442 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.00022 & 0.000715 & 1.844139 & 4.88 \mathrm{E}-06 & 5.12 \mathrm{E}-05 & 4.96 \mathrm{E}-05 \\ 3.54 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.59 & 212.4089 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001939 & 0.009858 & 44.49342 & 0.000117 & 0.000584 & 0.000567 & 0.00083\end{array}$ $\begin{array}{llllllllllllllllll}0.59 & 30.18442 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000276 & 0.001401 & 6.32275 & 1.67 \mathrm{E}-05 & 8.3 \mathrm{E}-05 & 8.05 \mathrm{E}-05 & 0.000118\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 29.41046 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000251 & 0.001778 & 1.140241 & 3.02 \mathrm{E}-06 & 4.79 \mathrm{E}-05 & 4.65 \mathrm{E}-05 & 2.36 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.59 & 45.22133 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000329 & 0.001072 & 2.76283 & 7.3 \mathrm{E}-06 & 7.66 \mathrm{E}-05 & 7.43 \mathrm{E}-05 & 5.3 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}0.59 & 45.22133 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000413 & 0.002099 & 9.472541 & 2.5 \mathrm{E}-05 & 0.000124 & 0.000121 & 0.00017\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.59 & 45.22133 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000413 & 0.002099 & 9.472541 & 2.5 \mathrm{E}-05 & 0.000124 & 0.000121 & 0.000177\end{array}$ $\begin{array}{lllllllllllllll}0.59 & 69.216 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.000435 & 0.001428 & 4.228828 & 1.12 \mathrm{E}-05 & 9.9 \mathrm{E}-05 & 9.6 \mathrm{E}-05 \\ 7.13 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 69.216 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.000435 & 0.001428 & 4.228828 & 1.12 \mathrm{E}-05 & 9.9 \mathrm{E}-05 & 9.6 \mathrm{E}-05 & 7.13 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllll}0.59 & 138.432 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001264 & 0.006425 & 28.99744 & 7.64 \mathrm{E}-05 & 0.000381 & 0.000369 & 0.000541\end{array}$

2028 Apron (GAAsphalt PliAsphalt Paver	Pavers175 Diese
2028 Apron (GA Asphalt Pli Dump Truck	Off-highw: Diese
2028 Apron (GA Asphalt Pl: Other General Equipment	Other Con Diese
2028 Apron (GA Asphalt Pli Pickup Truck	Off-highw: Dies
2028 Apron (GA Asphalt Pli Roller	Rollers 100 Di
2028 Apron (GA Asphalt Pli Skid Steer Loader	Skid Steer Dies
2028 Apron (GAAsphalt PliSurfacing Equipment (Grooving)	Other Con Dies
2028 Apron (GA Clearing aıChain Saw	Other Con Diese
2028 Apron (GA Clearing aıChipper/Stump Grinder	Other Con Dies
2028 Apron (GA Clearing aı Pickup Truck	Off-high
2028 Apron (GA Concrete FAir Compressor	Ot
2028 Apron (GA Concrete F Concrete Saws	Other Con Dies
2028 Apron (GA Concrete FConcrete Truck	Off-highw
2028 Apron (GA Concrete FOther General Equipment	Ot
2028 Apron (GA Concrete FPickup Truck	Off-high
2028 Apron (GA Concrete F Rubber Tired Load	Tractors
2028 Apron (GA Concrete FSlip Form Paver	Pa
2028 Apron (GA Concrete FSurfacing Equipment (Grooving)	Other Con Dies
2028 Apron (GA Drainage - Dozer	wler
2028 Apron (GA Drainage - Dump Truck	Off-highw
2028 Apron (GA Drainage - Excavator	Excavator
2028 Apron (GA Drainage - Loader	Tractors
2028 Apron (GA Drainage - Other General Equipment	Other Co
2028 Apron (GA Drainage - Pickup Truck	Off-high
2028 Apron (GA Drainage - Roller	Rollers1
2028 Apron (GA Drainage - Dump Truck	Off-highw
2028 Apron (GA Drainage - Loader	Tractors/LD
2028 Apron (GA Drainage - Other General Equipment	Ot
2028 Apron (GA Drainage - Pickup Truck	Off-highw
2028 Apron (GA Drainage - Tractors/Loader/Backhoe	Tractors/LD
2028 Apron (GA Dust Contr Water Truck	Off-high
2028 Apron (GA Excavatior Dozer	Craw
2028 Apron (GA Excavatior Dump Truck (12 cy)	Off-highw:
2028 Apron (GA Excavatior Pickup Truck	Off-high
2028 Apron (GA Excavatior Roller	Rollers 1
2028 Apron (GA Excavatior Dozer	Crawler T
2028 Apron (GA Excavatior Dump Truck (12 cy)	Off-high
2028 Apron (GA Excavatior Excavator	Excavat
2028 Apron (GA Excavatior Pickup Truck	Off-highw: Dies
2028 Apron (GA Excavatior Roller	Rollers
2028 Apron (GA Excavatior Scraper	Scrape
2028 Apron (GA Excavatior Dozer	Crawler Tr
2028 Apron (GAFencing Concrete Truck	Off-high
2028 Apron (GA Fencing Dump Truck	Off-high
2028 Apron (GAFencing Other General Equipment	Other Con
2028 Apron (GAFencing Pickup Truck	Off-high
2028 Apron (GA Fencing Skid Steer Load	Skid
2028 Apron (GAFencing Tractors/Loader/Backhoe	Tractors/L
2028 Apron (GA Grading Dozer	Crawler Tr Dies
2028 Apron (GAGrading Grader	Graders30 Dies
2028 Apron (GA Grading Roller	Rollers
2028 Apron (GA Hydroseec Hydroseeder	Other Con Dies
2028 Apron (GA Hydroseec Off-Road Truck	Off-h
2028 Apron (GA Lighting Dump Truck	Off-highw
2028 Apron (GA Lighting Loader	Tractors/
2028 Apron (GALighting Other General Equipment	Other Con
2028 Apron (GA Lighting Pickup Truck	Off-high
2028 Apron (GA Lighting Skid Steer Loader	Skid Steer
2028 Apron (GALighting Tractors/Loader/Backhoe	ract
2028 Apron (GAMarkings Flatbed Truck	Off-highw
2028 Apron (GAMarkings Other General Equipment	Other Co
2028 Apron (GAMarkings Pickup Truck	Off-high
2028 Apron (GA Sealing/Fu Distributing Tanker	Off-highw
2028 Apron (GA Sealing/FuOther General Equipment	Other Con
2028 Apron (GASealing/FuPickup Truck	Off-high
2028 Apron (GA Soil Erosio Other General Equipment	Ot
2028 Apron (GA Soil Erosio Pickup Truck	Off-highw:
2028 Apron (GA Soil Erosio Pumps	Other Con Dies
2028 Apron (GA Soil Erosio Tractors/Loader/Backhoe	Tractors
2028 Apron (GA Subbase P Dozer	Crawler Tr
2028 Apron (GA Subbase P Dump Truck (12 cy)	Off-highw
2028 Apron (GA Subbase P P Pickup Truck	Off-high
2028 Apron (GA Subbase P R Roller	Rollers 10
2028 Apron (GA Topsoil Ple Dozer	Cra
2028 Apron (GA Topsoil Pla Dump Truck	Off-highw
2028 Apron (GA Topsoil Pla Pickup Truck	Off-highw:
2028 Building - : Concrete FBackhoe	Tractors/L Di
2028 Building - Concrete F Concrete Ready Mix Trucks	Off-highw
2028 Building - : Concrete FFork Truck	Other Con D
2028 Building - :Concrete F Tool Truck	Off-highw: Dies
2028 Building - :Concrete FTractor Trailer- Material Delivery	Off-highw: Dies
2028 Building - : Constructi Survey Crew Trucks	Off-highw: Dis
2028 Building - :Constructi Tractor Trailers Temp Fac.	Off-highw: Di
2028 Building - :Exterior WFork Truck	

600
600
175
0.59 0.59
0.43
0.43
0.59
\qquad
0.59
0.21
0.21
0.59
0.59
0.7

7.69792	$1.49 \mathrm{E}+00$	$3.62 \mathrm{E}+00$	$6.95 \mathrm{E}+02$	$2.10 \mathrm{E}-03$	$3.16 \mathrm{E}-01$	$3.07 \mathrm{E}-01$	$4.51 \mathrm{E}-01$	0.000254	0.000378	0.072532	$2.19 \mathrm{E}-07$	$3.3 \mathrm{E}-05$	$3.2 \mathrm{E}-05$
$4.71 \mathrm{E}-0$													

$\begin{array}{lllllllllllllll}0.7 & 13.2 & 2.46 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 0.000186 & 0.000471 & 0.07449 & 2.74 \mathrm{E}-07 & 2.13 \mathrm{E}-05 & 2.07 \mathrm{E}-05 \\ 4.4 \mathrm{E}-05 \\ 0.7 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 0.000276 & 0.000469 & 0.066524 & 2.45 \mathrm{E}-07 & 2.67 \mathrm{E}-05 & 2.59 \mathrm{E}-05 & 9.39 \mathrm{E}-05\end{array}$

$\begin{array}{lllllllllllllll}13.2 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000204 & 0.000694 & 0.372948 & 1.01 \mathrm{E}-06 & 3.17 \mathrm{E}-05 & 3.07 \mathrm{E}-05 & 1.84 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}17.6 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000161 & 0.000817 & 3.686683 & 9.72 \mathrm{E}-06 & 4.84 \mathrm{E}-05 & 4.7 \mathrm{E}-05 & 6.87 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllllll}16.0376 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000248 & 0.000844 & 0.453121 & 1.22 \mathrm{E}-06 & 3.85 \mathrm{E}-05 & 3.73 \mathrm{E}-05 & 2.23 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllllllll}16.0376 & 2.79 \mathrm{E}-01 & 2.53 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.57 \mathrm{E}-03 & 2.05 \mathrm{E}-02 & 1.98 \mathrm{E}-02 & 9.25 \mathrm{E}-02 & 0.000116 & 0.001055 & 0.248609 & 6.55 \mathrm{E}-07 & 8.54 \mathrm{E}-06 & 8.28 \mathrm{E}-06 & 3.86 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 66.82333 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.00061 & 0.003101 & 13.99753 & 3.69 \mathrm{E}-05 & 0.000184 & 0.000178 & 0.000261\end{array}$
$\begin{array}{lllllllllllllllll}0.43 & 32.0752 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000388 & 0.001122 & 1.428111 & 3.86 \mathrm{E}-06 & 9.46 \mathrm{E}-05 & 9.17 \mathrm{E}-05 & 6.59 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll} & 48.1128 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000439 & 0.002233 & 10.07822 & 2.66 \mathrm{E}-05 & 0.000132 & 0.000128 & 0.000188\end{array}$
$\begin{array}{lllllllllllllll}16.0376 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.001036 & 0.001994 & 1.142882 & 3.23 \mathrm{E}-06 & 0.000241 & 0.000234 & 0.000259\end{array}$
$\begin{array}{rrrrrrrrrrrrr}16.0376 & 7.28 \mathrm{E}-02 & 2.27 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 0.000133 & 0.000414 & 0.979821 & 2.6 \mathrm{E}-06 & 3.15 \mathrm{E}-05 \\ 3.06 \mathrm{E}-05 & 2.1 \mathrm{E}-05\end{array}$

$\begin{array}{lllllllllllllll}8.576 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 6.24 \mathrm{E}-05 & 0.000203 & 0.523957 & 1.39 \mathrm{E}-06 & 1.45 \mathrm{E}-05 & 1.41 \mathrm{E}-05 & 1 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllllllllll}8.576 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 7.83 \mathrm{E}-05 & 0.000398 & 1.79642 & 4.74 \mathrm{E}-06 & 2.36 \mathrm{E}-05 & 2.29 \mathrm{E}-05 & 3.35 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllll}8.576 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 5.39 \mathrm{E}-05 & 0.000177 & 0.52396 & 1.38 \mathrm{E}-06 & 1.23 \mathrm{E}-05 & 1.19 \mathrm{E}-05 & 8.83 \mathrm{E}-06\end{array}$

$\begin{array}{lllllllllllllll}8.576 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000104 & 0.0003 & 0.381836 & 1.03 \mathrm{E}-06 & 2.53 \mathrm{E}-05 & 2.45 \mathrm{E}-05 & 1.76 \mathrm{E}-05\end{array}$

$\begin{array}{lllllllllllllll}4.764444 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 4.35 \mathrm{E}-05 & 0.000221 & 0.998011 & 2.63 \mathrm{E}-06 & 1.31 \mathrm{E}-05 & 1.27 \mathrm{E}-05 & 1.86 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllll}4.764444 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.000308 & 0.000592 & 0.339527 & 9.6 \mathrm{E}-07 & 7.17 \mathrm{E}-05 & 6.95 \mathrm{E}-05 & 7.71 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllll}0.43 & 4.764444 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 5.76 \mathrm{E}-05 & 0.000167 & 0.212131 & 5.73 \mathrm{E}-07 & 1.4 \mathrm{E}-05 & 1.36 \mathrm{E}-05 \\ 9.8 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllllll}0.59 & 4.764444 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 4.35 \mathrm{E}-05 & 0.000221 & 0.998011 & 2.63 \mathrm{E}-06 & 1.31 \mathrm{E}-05 & 1.27 \mathrm{E}-05 & 1.86 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll}0.21 & 4.764444 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000153 & 0.000195 & 0.076699 & 2.17 \mathrm{E}-07 & 2.2 \mathrm{E}-05 & 2.13 \mathrm{E}-05 & 2.16 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllllllllll}0.59 & 2160 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.019722 & 0.10025 & 452.4566 & 0.001193 & 0.005942 & 0.005764 & 0.00843\end{array}$
$\begin{array}{lllllllllllllllllllll}0.59 & 26.72933 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000195 & 0.000633 & 1.633048 & 4.32 \mathrm{E}-06 & 4.53 \mathrm{E}-05 & 4.39 \mathrm{E}-05 & 3.13 \mathrm{E}-05\end{array}$

$\begin{array}{lllllllllllllllllllllllll}0.59 & 26.72933 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000244 & 0.001241 & 5.59901 & 1.48 \mathrm{E}-05 & 7.35 \mathrm{E}-05 & 7.13 \mathrm{E}-05 & 0.000104\end{array}$
$\begin{array}{lllllllllllllllllllll}0.59 & 26.72933 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000244 & 0.001241 & 5.59901 & 1.48 \mathrm{E}-05 & 7.35 \mathrm{E}-05 & 7.13 \mathrm{E}-05 & 0.00010\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 12.33662 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000105 & 0.000746 & 0.478289 & 1.27 \mathrm{E}-06 & 2.01 \mathrm{E}-05 & 1.95 \mathrm{E}-05 & 9.9 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllllllllllllllllll}0.59 & 20.047 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.000146 & 0.000475 & 1.224786 & 3.24 \mathrm{E}-06 & 3.4 \mathrm{E}-05 & 3.3 \mathrm{E}-05 & 2.35 \mathrm{E}-05\end{array}$

$\begin{array}{llllllllllllllllllll}0.59 & 16.0376 & 5.52 \mathrm{E}-02 & 1 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.000101 & 0.000331 & 0.979835 & 2.58 \mathrm{E}-06 & 2.29 \mathrm{E}-05 & 2.22 \mathrm{E}-05 & 1.65 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll}0.59 & 16.0376 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000146 & 0.000744 & 3.359406 & 8.86 \mathrm{E}-06 & 4.41 \mathrm{E}-05 & 4.28 \mathrm{E}-05 & 6.26 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllllllll}0.59 & 16.0376 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000137 & 0.00097 & 0.621776 & 1.65 \mathrm{E}-06 & 2.61 \mathrm{E}-05 & 2.53 \mathrm{E}-05 & 1.29 \mathrm{E}-05\end{array}$

$\begin{array}{llllllllllllllllll}0.59 & 20.047 & 1.10 \mathrm{E}-01 & 3.00 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 2.15 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 2.04 \mathrm{E}-02 & 0.00086 & 0.002347 & 4.199018 & 1.13 \mathrm{E}-05 & 0.000168 & 0.000163 & 0.00016\end{array}$
$\begin{array}{lllllllllllllll}0.59 & 7.54698 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 5.5 \mathrm{E}-05 & 0.000179 & 0.461088 & 1.22 \mathrm{E}-06 & 1.28 \mathrm{E}-05 & 1.24 \mathrm{E}-05 \\ 8.84 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllll}0.59 & 2.866667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 2.62 \mathrm{E}-05 & 0.000133 & 0.600482 & 1.58 \mathrm{E}-06 & 7.89 \mathrm{E}-06 & 7.65 \mathrm{E}-06 & 1.12 \mathrm{E}-02\end{array}$
$\begin{array}{llllllllllllllllllllllllll}0.59 & 11.46667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000105 & 0.000532 & 2.40193 & 6.33 \mathrm{E}-06 & 3.15 \mathrm{E}-05 & 3.06 \mathrm{E}-05 & 4.48 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllll}0.43 & 11.46667 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000139 & 0.000401 & 0.51054 & 1.38 \mathrm{E}-06 & 3.38 \mathrm{E}-05 & 3.28 \mathrm{E}-05 \\ 2.36 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 11.46667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000105 & 0.000532 & 2.40193 & 6.33 \mathrm{E}-06 & 3.15 \mathrm{E}-05 & 3.06 \mathrm{E}-05 & 4.48 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllllll}0.21 & 11.46667 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.000485 & 0.000721 & 0.138294 & 4.18 \mathrm{E}-07 & 6.3 \mathrm{E}-05 & 6.11 \mathrm{E}-05 & 8.98 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllllllll} \\ 0.21 & 11.46667 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.9 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000369 & 0.00047 & 0.184593 & 5.23 \mathrm{E}-07 & 5.28 \mathrm{E}-05 & 5.13 \mathrm{E}-05 & 5.2 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 5.2951 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 3.86 \mathrm{E}-05 & 0.000125 & 0.323508 & 8.55 \mathrm{E}-07 & 8.97 \mathrm{E}-06 & 8.7 \mathrm{E}-06 & 6.2 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllllllllll}0.59 & 5.2951 & 2.80 \mathrm{E}-02 & 1.31 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 8.01 \mathrm{E}-03 & 7.77 \mathrm{E}-03 & 1.08 \mathrm{E}-02 & 2.89 \mathrm{E}-05 & 0.000135 & 0.554582 & 1.46 \mathrm{E}-06 & 8.27 \mathrm{E}-06 & 8.02 \mathrm{E}-06 & 1.12 \mathrm{E}-0\end{array}$

| | 5 | 5.2951 | $1.31 \mathrm{E}-01$ | $9.30 \mathrm{E}-01$ | $5.96 \mathrm{E}+02$ | $1.58 \mathrm{E}-03$ | $2.51 \mathrm{E}-02$ | $2.43 \mathrm{E}-02$ | $1.23 \mathrm{E}-02$ | $4.52 \mathrm{E}-05$ | 0.00032 | 0.205291 | $5.45 \mathrm{E}-07$ | $8.63 \mathrm{E}-06$ | $8.37 \mathrm{E}-06$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{4 . 2 5 \mathrm { E } - 0 6}$

 \(\begin{array}{llllllllllllllllllll}4.7704 & 3.46 \mathrm{E}-01 & 8.05 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.52 \mathrm{E}-03 & 5.65 \mathrm{E}-02 & 5.48 \mathrm{E}-02 & 4.96 \mathrm{E}-02 & 0.000644 & 0.001499 & 0.999044 & 2.82 \mathrm{E}-06 & 0.000105 & 0.000102 & 9.24 \mathrm{E}-0\end{array}\)
 \(\begin{array}{llllllllllllllll} \\ 4.7704 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 4.36 \mathrm{E}-05 & 0.000221 & 0.9999259 & 2.63 \mathrm{E}-06 & 1.31 \mathrm{E}-05 & 1.27 \mathrm{E}-05 & 1.86 \mathrm{E}-05\end{array}\)
 \(\begin{array}{lllllllllllllll} \\ 5.68 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 5.19 \mathrm{E}-05 & 0.000264 & 1.189793 & 3.14 \mathrm{E}-06 & 1.56 \mathrm{E}-05 & 1.52 \mathrm{E}-05 & 2.22 \mathrm{E}-05\end{array}\)
 \(\begin{array}{llllllllllllll}5.68 & .34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & .05 \mathrm{E}-03 & 6.84 \mathrm{E}-0 & 1.00 \mathrm{E}-02 & 5.19 \mathrm{E}-06 & 0.000264 & 1.89793 & 3.14 \mathrm{E}-06 & 1.56 \mathrm{E}-05 & 1.52 \mathrm{E}-05 \\ 5.68 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.000367 & 0.000706 & 0.404772 & 1.14 \mathrm{E}-06 & 8.54 \mathrm{E}-05 & 8.29 \mathrm{E}-05 \\ 9.19 \mathrm{E}-0\end{array}\)
 \(\begin{array}{lllllllllllllll}5.68 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 6.87 \mathrm{E}-05 & 0.000199 & 0.252895 & 6.83 \mathrm{E}-07 & 1.67 \mathrm{E}-05 & 1.62 \mathrm{E}-05 & 1.17 \mathrm{E}-0\end{array}\)
 \(\begin{array}{llllllllllllllll}5.68 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 6.87 \mathrm{E}-05 & 0.000199 & 0.252895 & 6.83 \mathrm{E}-07 & 1.67 \mathrm{E}-05 & 1.62 \mathrm{E}-05 & 1.17 \mathrm{E}-05 \\ 5.68 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 5.19 \mathrm{E}-05 & 0.000264 & 1.189793 & 3.14 \mathrm{E}-06 & 1.56 \mathrm{E}-05 & 1.52 \mathrm{E}-05 & 2.22 \mathrm{E}-05\end{array}\)
 \(\begin{array}{lllllllllllllll}5.68 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 5.19 \mathrm{E}-05 & 0.000264 & 1.189793 & 3.14 \mathrm{E}-06 & 1.56 \mathrm{E}-05 & 1.52 \mathrm{E}-05 & 2.22 \mathrm{E}-05\end{array}\)
 \(\begin{array}{lllllllllllllll}5.68 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.00024 & 0.000357 & 0.068504 & 2.07 \mathrm{E}-07 & 3.12 \mathrm{E}-05 & 3.03 \mathrm{E}-05 & 4.45 \mathrm{E}-05 \\ 5.68 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000183 & 0.000233 & 0.091438 & 2.59 \mathrm{E}-07 & 2.62 \mathrm{E}-05 & 2.54 \mathrm{E}-05 & 2.57 \mathrm{E}-05\end{array}\)
 \(\begin{array}{lllllllllllllllll}5.68 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000183 & 0.000233 & 0.091438 & 2.59 \mathrm{E}-07 & 2.62 \mathrm{E}-05 & 2.54 \mathrm{E}-05 & 2.57 \mathrm{E}-0\end{array}\)
 \(\begin{array}{lllllllllllllllllll}99.072 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000905 & 0.004598 & 20.75267 & 5.47 \mathrm{E}-05 & 0.000273 & 0.000264 & 0.000387\end{array}\)
 \(\begin{array}{llllllllllllllllllllll}99.072 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.001198 & 0.003464 & 4.411066 & 1.19 \mathrm{E}-05 & 0.000292 & 0.000283 & 0.000204\end{array}\)
 \begin{tabular}{lrrrrrrrrrrrrrrr}
 0.43 \& 99.072 \& $1.46 \mathrm{E}-01$ \& $4.22 \mathrm{E}-01$ \& $5.37 \mathrm{E}+02$ \& $1.45 \mathrm{E}-03$ \& $3.55 \mathrm{E}-02$ \& $3.45 \mathrm{E}-02$ \& $2.48 \mathrm{E}-02$ \& 0.001198 \& 0.003464 \& 4.411066 \& $1.19 \mathrm{E}-05$ \& 0.000292 \& 0.000283 \& 0.000204

0.59 \& 99.072 \& $2.34 \mathrm{E}-02$ \& 1.19 E \& 5.01 \& $5.37 \mathrm{E}+02$ \& $1.42 \mathrm{E}-03$ \& $7.05 \mathrm{E}-03$ \& $6.84 \mathrm{E}-03$ \& 1.00 E \& 0.00 \& 0.000905 \& 0.004598 \& 20.75267 \& $5.47 \mathrm{E}-05$ \& 0.000273

\hline
\end{tabular}

 \(\begin{array}{lllllllllllllllllll}0.59 & 12.82987 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000117 & 0.000595 & 2.68748 & 7.08 \mathrm{E}-06 & 3.53 \mathrm{E}-05 & 3.42 \mathrm{E}-05 & 5.01 \mathrm{E}-05\end{array}\)
 0.5912 .82287 1.36E

$\begin{array}{llllllllllllllllllllll}0.59 & 12.82987 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000117 & 0.000595 & 2.68748 & 7.08 \mathrm{E}-06 & 3.53 \mathrm{E}-05 & 3.42 \mathrm{E}-05 & 5.01 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllllllll}0.43 & 4.4 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 5.32 \mathrm{E}-05 & 0.000154 & 0.195905 & 5.29 \mathrm{E}-07 & 1.3 \mathrm{E}-05 & 1.26 \mathrm{E}-05 \\ 0.05 \mathrm{E} & 9.05 \mathrm{E}-06\end{array}$

$\begin{array}{lllllllllllllll}0.43 & 4.4 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 5.64 \mathrm{E}-05 & 9.6 \mathrm{E}-05 & 0.013622 & 5.01 \mathrm{E}-08 & 5.48 \mathrm{E}-06 & 5.31 \mathrm{E}-06 \\ 0.21 & 4.4 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}-02 \\ 0.02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0 & 005 & \end{array}$

0.21	4.4	$1.39 \mathrm{E}+00$	$1.77 \mathrm{E}+00$	$6.95 \mathrm{E}+02$	$1.97 \mathrm{E}-03$	$1.99 \mathrm{E}-01$	$1.93 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	0.000141	0.000181	0.070832	$2 \mathrm{E}-07$	$2.03 \mathrm{E}-05$	$1.97 \mathrm{E}-05$
0.99 E	$1.99 \mathrm{E}-05$													
0.59	10.12884	$6.40 \mathrm{E}-02$	$2.08 \mathrm{E}-01$	$5.37 \mathrm{E}+02$	$1.42 \mathrm{E}-03$	$1.49 \mathrm{E}-02$	$1.44 \mathrm{E}-02$	$1.03 \mathrm{E}-02$	$7.38 \mathrm{E}-05$	0.00024	0.618829	$1.64 \mathrm{E}-06$	$1.72 \mathrm{E}-05$	$1.66 \mathrm{E}-05$

$\begin{array}{lllllllllllllllll}0.59 & 71.27556 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000651 & 0.003308 & 14.93014 & 3.94 \mathrm{E}-05 & 0.000196 & 0.00019 & 0.000278\end{array}$
$\begin{array}{lllllllllllllllllllllll}0.59 & 10.12884 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 9.25 \mathrm{E}-05 & 0.00047 & 2.121695 & 5.59 \mathrm{E}-06 & 2.79 \mathrm{E}-05 & 2.7 \mathrm{E}-05 & 3.96 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllllll} & 2.43 \mathrm{E}-02 & 1.23 & 8 & 0.435 & 0.000597 & 0.382617 & 1.02 \mathrm{E}-06 & 1.61 \mathrm{E}-05 & 1.56 \mathrm{E}-05 & 7.92 \mathrm{E}-0\end{array}$
0.5911 .76667 6.40E-02
$\begin{array}{lllllllllllllllllllllllllllll}0.59 & 11.76667 & 2.44 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 8.57 \mathrm{E}-05 & 0.000279 & 0.718893 & 1.9 \mathrm{E}-06 & 1.99 \mathrm{E}-05 & 1.93 \mathrm{E}-05 & 1.38 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 11.76667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000107 & 0.000546 & 2.464771 & 6.5 \mathrm{E}-06 & 3.24 \mathrm{E}-05 & 3.14 \mathrm{E}-05 & 4.6 \mathrm{E}-05\end{array}$
$\begin{array}{lllllllllllllllll}0.59 & 11.76667 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000107 & 0.000546 & 2.464771 & 6.5 \mathrm{E}-06 & 3.24 \mathrm{E}-05 & 3.14 \mathrm{E}-05 & 4.6 \mathrm{E}-0\end{array}$
$\begin{array}{lrlllllllllllll}0.21 & 320 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.010287 & 0.013128 & 5.151444 & 1.46 \mathrm{E}-05 & 0.001475 & 0.00143 \\ 0.0 & 0.001451\end{array}$

$\begin{array}{llllllllllllll}80 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.00073 & 0.003713 & 16.75765 & 4.42 \mathrm{E}-05 & 0.00022 & 0.000213\end{array} 0.000312$
$\begin{array}{llllllllllllll}16 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000146 & 0.000743 & 3.35153 & 8.84 \mathrm{E}-06 & 4.4 \mathrm{E}-05 & 4.27 \mathrm{E}-05\end{array} \quad 6.25 \mathrm{E}-05$
$\begin{array}{llllllllllllll}10 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 9.13 \mathrm{E}-05 & 0.000464 & 2.094706 & 5.52 \mathrm{E}-06 & 2.75 \mathrm{E}-05 & 2.67 \mathrm{E}-05 \\ 3.91 \mathrm{E}-05\end{array}$
$4 \begin{array}{lllllllllllllll}4 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 3.65 \mathrm{E}-05 & 0.000186 & 0.837883 & 2.21 \mathrm{E}-06 & 1.1 \mathrm{E}-05 & 1.07 \mathrm{E}-05 & 1.56 \mathrm{E}-05\end{array}$

[^27] $\begin{array}{rr}100 & 0 \\ 75 & 0\end{array}$
0.21
0.59 0.59
0.59 0.59
0.21 0.21
0.59 0.59
0.59 0.59
0.21 0.21
0.59
0.59 0.59 0.59
0.59 0.59
0.43 0.43
0.59 0.59 0.59
0.59

 $\begin{array}{llllllllllllllllllll}24 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000219 & 0.001114 & 5.027295 & 1.33 \mathrm{E}-05 & 6.6 \mathrm{E}-05 & 6.4 \mathrm{E}-05 & 9.37 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllll}120 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001096 & 0.005569 & 25.13648 & 6.63 \mathrm{E}-05 & 0.00033 & 0.00032 & 0.000469\end{array}$ $\begin{array}{llllllllllllll}120 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.001096 & 0.005569 & 25.13648 & 6.63 \mathrm{E}-05 & 0.00033 & 0.00032 \\ 0\end{array} \mathbf{0} 0.000469$ $\begin{array}{llllllllllllllll}120 & 2.25 \mathrm{E}-01 & 1.02 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.60 \mathrm{E}-03 & 3.74 \mathrm{E}-02 & 3.63 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 0.001758 & 0.007947 & 4.65219 & 1.25 \mathrm{E}-05 & 0.000292 & 0.000283 & 0.000163\end{array}$ $\begin{array}{lllllllllllllll}120 & 3.06 \mathrm{E}-01 & 2.61 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.60 \mathrm{E}-03 & 3.19 \mathrm{E}-02 & 3.10 \mathrm{E}-02 & 6.42 \mathrm{E}-02 & 0.000637 & 0.005428 & 1.241615 & 3.34 \mathrm{E}-06 & 6.65 \mathrm{E}-05 & 6.45 \mathrm{E}-05 & 0.000134\end{array}$

 $\begin{array}{llllllllllllllllllllll}12 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5 & 57 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.00011 & 0.000557 & 2.513648 & 6.63 \mathrm{E}-06 & 3.3 \mathrm{E}-05 & 3.2 \mathrm{E}-05 & 4.69 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllll}12 & 2.35 \mathrm{E} & 2.25 \mathrm{E}-01 & 1.02 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.60 \mathrm{E}-03 & 3.74 \mathrm{E}-02 & 3.63 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 0.004687 & 0.021192 & 12.40584 & 3.32 \mathrm{E}-05 & 0.000778 & 0.000755 & 0 & 000436\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}320 & 2.25 E-01 & 1.02 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.60 \mathrm{E}-03 & 3.74 \mathrm{E}-02 & 3.63 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 0.004687 & 0.021192 & 12.40584 & 3.32 \mathrm{E}-05 & 0.000778 & 0.000755 & 0.00043\end{array}$ $\begin{array}{rrllllllllllll}80 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.00073 & 0.003713 & 16.75765 & 4.42 \mathrm{E}-05 & 0.00022 & 0.000213 \\ 240 & 4.06 \mathrm{E}-02 & 1.86 \mathrm{E}-01 & 5.31 \mathrm{E}+02 & 1.41 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 9.74 \mathrm{E}-03 & 1.40 \mathrm{E}-02 & 0.001385 & 0.006331 & 18\end{array}$ \begin{tabular}{llllllllllllll}
240 \& $4.06 \mathrm{E}-02$ \& $1.86 \mathrm{E}-01$ \& $5.31 \mathrm{E}+02$ \& $1.41 \mathrm{E}-03$ \& $1.00 \mathrm{E}-02$ \& $9.74 \mathrm{E}-03$ \& $1.40 \mathrm{E}-02$ \& 0.001385 \& 0.006331 \& 18.12187 \& $4.81 \mathrm{E}-05$ \& 0.000343 \& 0.000332

120 \& $3.26 \mathrm{E}-01$ \& $1.11 \mathrm{E}+00$ \& $5.96 \mathrm{E}+02$ \& $1.61 \mathrm{E}-03$ \& $5.06 \mathrm{E}-02$ \& $4.91 \mathrm{E}-02$ \& $2.94 \mathrm{E}-02$ \& 0.002544 \& 0.008661 \& 4.651995 \& $1.26 \mathrm{E}-05$ \& 0.000395 \& 0.000383

\hline

 $\begin{array}{rrrrrrrrrrrrr}120 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.002544 & 0.008661 & 4.651995 & 1.26 \mathrm{E}-05 & 0.000395 \\ 60 & 2.34 \mathrm{E}-02 & 1.0000383 & 0.000229\end{array}$ $\begin{array}{llllllllllllll}60 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000548 & 0.002785 & 12.56824 & 3.31 \mathrm{E}-05 & 0.000165 & 0.00016 \\ 16 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.000234 \\ \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000146 & 000743 & 3.35153 & 8.84 \mathrm{E}-06 & 4.4 \mathrm{E}-05 & 4.27 \mathrm{E}-05 & 6.25 \mathrm{E}-05\end{array}$

16 \& $2.34 \mathrm{E}-02$ \& $1.19 \mathrm{E}-01$ \& $5.37 \mathrm{E}+02$ \& $1.42 \mathrm{E}-03$ \& $7.05 \mathrm{E}-03$ \& $6.84 \mathrm{E}-03$ \& $1.00 \mathrm{E}-02$ \& 0.000146 \& 0.000743 \& 3.35153 \& $8.84 \mathrm{E}-06$ \& $4.4 \mathrm{E}-05$ \& $4.27 \mathrm{E}-05$

$6.25 \mathrm{E}-05$

\hline 375 \& $7.28 \mathrm{E}-02$ \& $2.27 \mathrm{E}-01$ \& $5.37 \mathrm{E}+02$ \& $1.42 \mathrm{E}-03$ \& $1.73 \mathrm{E}-02$ \& $1.67 \mathrm{E}-02$ \& $1.15 \mathrm{E}-02$ \& $2.4 \mathrm{E}-05$ \& $7.48 \mathrm{E}-05$ \& 0.177077 \& $4.69 \mathrm{E}-07$ \& $5.7 \mathrm{E}-06$ \& $5.52 \mathrm{E}-06$

$3.8 \mathrm{E}-06$
\end{tabular} $\begin{array}{rlrllllllllllllll}0.59 & 10.43872 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.73 \mathrm{E}-02 & 1.67 \mathrm{E}-02 & 1.15 \mathrm{E}-02 & 2.4 \mathrm{E}-05 & 7.48 \mathrm{E}-05 & 0.171077 & 4.69 \mathrm{E}-07 & 5.7 \mathrm{E}-06 & 5.52 \mathrm{E}-06 & 3.8 \mathrm{E}-06\end{array}$ 0.43 5.79675 $\begin{array}{llllllllllllllll} & 0.4 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 7.01 \mathrm{E}-05 & 0.000203 & 0.258094 & 6.97 \mathrm{E}-07 & 1.71 \mathrm{E}-05 & 1.66 \mathrm{E}-05 & 1.19 \mathrm{E}-05\end{array}$

 $\begin{array}{lllllllllllllllll}0.59 & 2.898375 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 2.48 \mathrm{E}-05 & 0.000175 & 0.11237 & 2.98 \mathrm{E}-07 & 4.72 \mathrm{E}-06 & 4.58 \mathrm{E}-06 & 2.33 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.21 & 2.898375 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.000123 & 0.000182 & 0.034956 & 1.06 \mathrm{E}-07 & 1.59 \mathrm{E}-05 & 1.54 \mathrm{E}-05 & 2.27 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}0.59 & 3.70992 & 1.49 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 8.98 \mathrm{E}-05 & 0.000227 & 0.0359 & 1.32 \mathrm{E}-07 & 1.03 \mathrm{E}-05 & 9.96 \mathrm{E}-06 & 2.12 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllll}0.7 & 7.2 & 2.46 \mathrm{E}+00 & 4.18 \mathrm{E}+00 & 5.94 \mathrm{E}+02 & 2.18 \mathrm{E}-03 & 2.39 \mathrm{E}-01 & 2.32 \mathrm{E}-01 & 8.38 \mathrm{E}-01 & 0.00015 & 0.000256 & 0.036286 & 1.33 \mathrm{E}-07 & 1.46 \mathrm{E}-05 & 1.41 \mathrm{E}-05 & 5.12 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}7.2 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000111 & 0.000379 & 0.203426 & 5.5 \mathrm{E}-07 & 1.73 \mathrm{E}-05 & 1.67 \mathrm{E}-05 & 1 \mathrm{E}-05\end{array}$
 $\begin{array}{lllllllllllllll}7.7288 & 3.26 \mathrm{E}-01 & 1.11 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.61 \mathrm{E}-03 & 5.06 \mathrm{E}-02 & 4.91 \mathrm{E}-02 & 2.94 \mathrm{E}-02 & 0.000119 & 0.000407 & 0.218367 & 5.9 \mathrm{E}-07 & 1.85 \mathrm{E}-05 & 1.8 \mathrm{E}-05 & 1.08 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}7.7288 & 2.79 \mathrm{E}-01 & 2.53 \mathrm{E}+00 & 5.96 \mathrm{E}+02 & 1.57 \mathrm{E}-03 & 2.05 \mathrm{E}-02 & 1.98 \mathrm{E}-02 & 9.25 \mathrm{E}-02 & 5.61 \mathrm{E}-05 & 0.000509 & 0.119809 & 3.15 \mathrm{E}-07 & 4.11 \mathrm{E}-06 & 3.99 \mathrm{E}-06 & 1.86 \mathrm{E}-05\end{array}$
 $\begin{array}{lllllllllllllllll} & 15.4576 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000187 & 0.00054 & 0.688232 & 1.86 \mathrm{E}-06 & 4.56 \mathrm{E}-05 & 4.42 \mathrm{E}-05 & 3.18 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}23.1864 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000212 & 0.001076 & 4.85687 & 1.28 \mathrm{E}-05 & 6.38 \mathrm{E}-05 & 6.19 \mathrm{E}-05 & 9.06 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllllllllllll}7.7288 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.000499 & 0.000961 & 0.550775 & 1.56 \mathrm{E}-06 & 0.000116 & 0.000113 & 0.000125\end{array}$ $\begin{array}{llllllllllllllll} & 7.788 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.000499 & 0.000961 & 0.550775 & 1.56 \mathrm{E}-06 & 0.000116 & 0.000113 & 0.000125\end{array}$ $\begin{array}{lllllllllllllllllll}7.7288 & 1.49 \mathrm{E}+00 & 3.76 \mathrm{E}+00 & 5.95 \mathrm{E}+02 & 2.19 \mathrm{E}-03 & 1.70 \mathrm{E}-01 & 1.65 \mathrm{E}-01 & 3.52 \mathrm{E}-01 & 0.000187 & 0.000473 & 0.074789 & 2.75 \mathrm{E}-07 & 2.14 \mathrm{E}-05 & 2.08 \mathrm{E}-05 & 4.42 \mathrm{E}-05\end{array}$
 $\begin{array}{lllllllllllllllllllllllll}25.32 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000231 & 0.001175 & 5.303796 & 1.4 \mathrm{E}-05 & 6.97 \mathrm{E}-05 & 6.76 \mathrm{E}-05 & 9.89 \mathrm{E}-05\end{array}$

 25.32 2. $\begin{array}{llllllllllllllll}20.576 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 0.00015 & 0.000488 & 1.257105 & 3.32 \mathrm{E}-06 & 3.49 \mathrm{E}-05 & 3.38 \mathrm{E}-05 & 2.41 \mathrm{E}-05 \\ 20.576 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000188 & 0.000955 & 4.310068 & 1.14 \mathrm{E}-05 & 5 & 56 \mathrm{E}-05 & 5.49 \mathrm{E}-05 & 8.04 \mathrm{E}\end{array}$ $\begin{array}{lllllllllllllll}20.576 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000188 & 0.000955 & 4.310068 & 1.14 \mathrm{E}-05 & 5.66 \mathrm{E}-05 & 5.49 \mathrm{E}-05 & 8.04 \mathrm{E}-05 \\ 20.576 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.000129 & 0.000425 & 1.257114 & 3.32 \mathrm{E}-06 & 2.94 \mathrm{E}-05 & 2.85 \mathrm{E}-05 & 2.12 \mathrm{E}\end{array}$ $\begin{array}{llllllllllllllllllllllll}20.576 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 0.000129 & 0.000425 & 1.257114 & 3.32 \mathrm{E}-06 & 2.94 \mathrm{E}-05 & 2.85 \mathrm{E}-05 & 2.12 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}20.576 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.00133 & 0.002559 & 1.466301 & 4.15 \mathrm{E}-06 & 0.000309 & 0.0003 & 0.000333 \\ 20.576 & 1.46 \mathrm{E}-01 & 4.22 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 3.55 \mathrm{E}-02 & 3.45 \mathrm{E}-02 & 2.48 \mathrm{E}-02 & 0.000249 & 0.000719 & 0.916123 & 2.47 \mathrm{E}-06 & 6.07 \mathrm{E}-05 & 5.89 \mathrm{E}-05 & 4.23 \mathrm{E}-05\end{array}$
 $\begin{array}{lllllllllllllll}20.576 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000188 & 0.000955 & 4.310068 & 1.14 \mathrm{E}-05 & 5.66 \mathrm{E}-05 & 5.49 \mathrm{E}-05 & 8.04 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}20.576 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 0.000176 & 0.001244 & 0.79773 & 2.12 \mathrm{E}-06 & 3.35 \mathrm{E}-05 & 3.25 \mathrm{E}-05 & 1.65 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllll}11.43111 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000104 & 0.000531 & 2.394482 & 6.31 \mathrm{E}-06 & 3.14 \mathrm{E}-05 & 3.05 \mathrm{E}-05 & 4.46 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.59 & 11.43111 & 5.68 \mathrm{E}-01 & 1.09 \mathrm{E}+00 & 6.26 \mathrm{E}+02 & 1.77 \mathrm{E}-03 & 1.32 \mathrm{E}-01 & 1.28 \mathrm{E}-01 & 1.42 \mathrm{E}-01 & 0.000739 & 0.001422 & 0.814612 & 2.3 \mathrm{E}-06 & 0.000172 & 0.000167 & 0.000185\end{array}$
 $\begin{array}{lllllllllllllllllllllllll}0.59 & 11.43111 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000104 & 0.000531 & 2.394482 & 6.31 \mathrm{E}-06 & 3.14 \mathrm{E}-05 & 3.05 \mathrm{E}-05 & 4.46 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.21 & 11.43111 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000367 & 0.000469 & 0.184021 & 5.21 \mathrm{E}-07 & 5.27 \mathrm{E}-05 & 5.11 \mathrm{E}-05 & 5.18 \mathrm{E}-05\end{array}$ 0.59 $\begin{array}{lllllllllllllll}0.59 & 12.88 & 6.40 \mathrm{E}-02 & 2.08 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.49 \mathrm{E}-02 & 1.44 \mathrm{E}-02 & 1.03 \mathrm{E}-02 & 9.38 \mathrm{E}-05 & 0.000305 & 0.786994 & 2.08 \mathrm{E}-06 & 2.18 \mathrm{E}-05 & 2.12 \mathrm{E}-05 \\ 1.51 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}0.59 & 12.88133 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000118 & 0.000598 & 2.698261 & 7.11 \mathrm{E}-06 & 3.54 \mathrm{E}-05 & 3.44 \mathrm{E}-05 & 5.03 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.59 & 12.88133 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000118 & 0.000598 & 2.698261 & 7.11 \mathrm{E}-06 & 3.54 \mathrm{E}-05 & 3.44 \mathrm{E}-05 & 5.03 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.59 & 5.945231 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 5.08 \mathrm{E}-05 & 0.000359 & 0.230496 & 6.11 \mathrm{E}-07 & 9.69 \mathrm{E}-06 & 9.4 \mathrm{E}-06 & 4.77 \mathrm{E}-06\end{array}$
 $\begin{array}{lllllllllllllll}0.59 & 25.76267 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000235 & 0.001196 & 5.396522 & 1.42 \mathrm{E}-05 & 7.09 \mathrm{E}-05 & 6.87 \mathrm{E}-05 \\ 0.00010\end{array}$ $\begin{array}{lllllllllllllllll}0.59 & 7.7288 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 4.85 \mathrm{E}-05 & 0.000159 & 0.4722 & 1.25 \mathrm{E}-06 & 1.1 \mathrm{E}-05 & 1.07 \mathrm{E}-05 & 7.96 \mathrm{E}-06\end{array}$ $\begin{array}{lllllllllllllll}7.7288 & 5.52 \mathrm{E}-02 & 1.81 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 1.26 \mathrm{E}-02 & 1.22 \mathrm{E}-02 & 9.05 \mathrm{E}-03 & 4.85 \mathrm{E}-05 & 0.000159 & 0.4722 & 1.25 \mathrm{E}-06 & 1.1 \mathrm{E}-05 & 1.07 \mathrm{E}-05 & 7.96 \mathrm{E}-06 \\ 7.728 \mathrm{E} & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 7.06 \mathrm{E}-05 & 0.000359 & 1.618957 & 4.27 \mathrm{E}-06 & 2.13 \mathrm{E}-05 & 2.06 \mathrm{E}-05 & 3.02 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllll}7.7288 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 7.06 \mathrm{E}-05 & 0.000359 & 1.618957 & 4.27 \mathrm{E}-06 & 2.13 \mathrm{E}-05 & 2.06 \mathrm{E}-05 & 3.02 \mathrm{E}-05 \\ 7.7288 & 1.31 \mathrm{E}-01 & 9.30 \mathrm{E}-01 & 5.96 \mathrm{E}+02 & 1.58 \mathrm{E}-03 & 2.51 \mathrm{E}-02 & 2.43 \mathrm{E}-02 & 1.23 \mathrm{E}-02 & 6.6 \mathrm{E}-05 & 0.000467 & 0.299645 & 7.95 \mathrm{E}-07 & 1.26 \mathrm{E}-05 & 1.22 \mathrm{E}-05 & 6.2 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllll} \\ 9.661 & 1.10 \mathrm{E}-01 & 3.00 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.45 \mathrm{E}-03 & 2.15 \mathrm{E}-02 & 2.09 \mathrm{E}-02 & 2.04 \mathrm{E}-02 & 0.000414 & 0.001131 & 2.02358 & 5.45 \mathrm{E}-06 & 8.12 \mathrm{E}-05 & 7.88 \mathrm{E}-05 \\ 7.2 \mathrm{E} & 7.05\end{array}$

 | 0.43 | 28.13333 | $1.46 \mathrm{E}-01$ | $4.22 \mathrm{E}-01$ | $5.37 \mathrm{E}+02$ | $1.45 \mathrm{E}-03$ | $3.55 \mathrm{E}-02$ | $3.45 \mathrm{E}-02$ | $2.48 \mathrm{E}-02$ | 0.00034 | 0.000984 | 1.252604 | $3.38 \mathrm{E}-06$ | $8.3 \mathrm{E}-05$ | $8.05 \mathrm{E}-05$ | $5.78 \mathrm{E}-0$ |
| :--- | $\begin{array}{llllllllllllllllllllllll}0.59 & 28.13333 & 2.34 \mathrm{E}-02 & 1.19 \mathrm{E}-01 & 5.37 \mathrm{E}+02 & 1.42 \mathrm{E}-03 & 7.05 \mathrm{E}-03 & 6.84 \mathrm{E}-03 & 1.00 \mathrm{E}-02 & 0.000257 & 0.001306 & 5.893107 & 1.55 \mathrm{E}-05 & 7.74 \mathrm{E}-05 & 7.51 \mathrm{E}-05 & 0.0001 \\ 0.21 & 28.13333 & 24 E & \end{array}$ $\begin{array}{llllllllllllllllllll}0.21 & 28.13333 & 2.44 \mathrm{E}+00 & 3.62 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 2.10 \mathrm{E}-03 & 3.16 \mathrm{E}-01 & 3.07 \mathrm{E}-01 & 4.51 \mathrm{E}-01 & 0.001189 & 0.001769 & 0.339303 & 1.03 \mathrm{E}-06 & 0.000154 & 0.00015 & 0.00022\end{array}$ $\begin{array}{llllllllllllllllll}0.21 & 28.13333 & 1.39 \mathrm{E}+00 & 1.77 \mathrm{E}+00 & 6.95 \mathrm{E}+02 & 1.97 \mathrm{E}-03 & 1.99 \mathrm{E}-01 & 1.93 \mathrm{E}-01 & 1.96 \mathrm{E}-01 & 0.000904 & 0.001154 & 0.452898 & 1.28 \mathrm{E}-06 & 0.00013 & 0.000126 & 0.000128\end{array}$

0.59	3.069	$2.80 \mathrm{E}-02$	$1.31 \mathrm{E}-01$	$5.37 \mathrm{E}+02$	$1.42 \mathrm{E}-03$	$8.01 \mathrm{E}-03$	$7.77 \mathrm{E}-03$	$1.08 \mathrm{E}-02$	$1.68 \mathrm{E}-05$	$7.84 \mathrm{E}-05$	0.321432	$8.49 \mathrm{E}-07$	$4.79 \mathrm{E}-06$	$4.65 \mathrm{E}-06$
$6.49 \mathrm{E}-06$														
0.59	3069	$13 \mathrm{E}-01$	9.30 E	01	$5.96 \mathrm{E}+02$	$1.58 \mathrm{E}-03$	$2.51 \mathrm{E}-02$	$2.43 \mathrm{E}-02$	$1.23 \mathrm{E}-02$	$2.62 \mathrm{E}-05$	0.000186	0.118985	$3.16 \mathrm{E}-07$	$5 \mathrm{E}-06$


```
2028 Building -:Material 
2 0 2 8 \text { Access RoćAsphalt D}
2028 Access Roč Asphalt D
2028 Access Rocisphalt St,
2028 Access Roö Concrete
2028 Access Roö Material N
2028 Access Roc:Material N
2028 Access Ro=Soil Handl
2028 Access RoćSoil Handl
totals
2028 Totals
Year Emission SCO NOx SO2
    2028 NonRoad 0.322691 1.198882
    2028 OnRoad 27.81477 0.611901
```



```
    lrlor
\begin{tabular}{rrrrrr}
12 & 0 & 0 & 0 & 0.03535 & 0 \\
9 & 0 & 0 & 0 & 0 & 0.05 \\
9 & 0.05055 & 0.003156 & 0.000581 & 0.003461 & 0.001565 \\
9 & 0 & 0 & 0 & 0.01785 & 0 \\
9 & 0 & 0 & 0 & 0.0179 & 0 \\
9 & 0 & 0 & 0 & 0.05455 & 0 \\
9 & 0 & 0 & 0 & 0.0059 & 0 \\
9 & 0 & 0 & 0 & \(6.32 \mathrm{E}-09\) & 0 \\
& \(\mathbf{0 . 5 5 9 4 5}\) & \(\mathbf{0 . 0 3 4 9 0 6}\) & 0.006428 & \(\mathbf{0 . 6 9 5 7 4}\) & \(\mathbf{0 . 2 1 7 3 4 8}\)
\end{tabular}
    PM10 PM2.5 VOC CO2 CH4 N2O
CO2e
0.009113367 0.073912 0.071695 0.0.0889 3445.847 -- 
    llllllll
    2028 TOTAL 28.69691 1.845689 0.0064275 0.69574 --
ASSUMPTIONS
Emission factors were developed from the following models:
```

On-Road Vehicles: MOVES3.0.2, revised September 2021
Non-Road Equipment: MOVES3.0.2 September 2021
In addition to the overall project size dimensions (e.g., Length and width) provided by the user, an additional 10 ft length and 10 ft width is added to account for disturbance areas.
The number of employees is based on the higher of two methods: (1) number of equipment, and (2) multiply the project cost in million by 11
The average employee travels 30 miles round-trip from home to construction site each day
The average on-road material delivery round-trip distance per truck is 40 miles per day.
For calculating fugitive, re-entrained PM emissions from on-road and non-road material delivery and handling equipment, a nominal VMT of 5 miles is used for each vehicle per day.
In deriving emission factors from NONROAD, the horsepower for each equipment represents the most popular in each equipment category.
The total length of each modeled scenario is used to define the number of days associated with vehicle/equipment evaporative emissions.
The choice of location and season are assumed to a dequately represent differences in fuel characteristics affecting emissions.
Only two seasons (Summer and Winter) are used to represent all season
14 U.S. Counties are used to represent all other counties in the U.S. (all other counties are mapped to the 14).
The default methods assume that all construction equipment use diesel as well as heavy-duty on-road vehicles, while passenger vehicles (including motorcycles) use gasoline.

```
Fugitive emissions are only modeled for.
    Asphalt drying
    Asphalt storage and batching
    Concrete mixing/batching
    Soil handling
    Unstabilized land and wind erosion
    Material movement (unpaved roads)
```

 Material movement (paved roads)
 On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
Crack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)

> N2O CO NOX SO2 PM10 PM2.5 VOC CO2 CH4 ${ }^{13}$ N2O $\begin{array}{llllllllll}0.002802 & 0.001275 & 0.002166 & 3.14 \mathrm{E}-06 & 3.06 \mathrm{E}-05 & 2.81 \mathrm{E}-05 & 8.82 \mathrm{E}-05 & 0.941577 & 1.1 \mathrm{E}-05 & 1.7 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllll}0.003286 & 0.011591 & 0.015423 & 3.12 \mathrm{E}-05 & 0.000184 & 0.000169 & 0.000722 & 9.322254 & 0.000138 & 3.17 \mathrm{E}-05 \\ 0.003286 & 0.001031 & 0.001372 & 2.77 \mathrm{E}-06 & 1.63 \mathrm{E}-05 & 1.5 \mathrm{E}-05 & 6.42 \mathrm{E}-05 & 0.829166 & 1.23 \mathrm{E}-05 & 2.82 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllll}0.003286 & 0.001031 & 0.001372 & 2.77 \mathrm{E}-06 & 1.63 \mathrm{E}-05 & 1.5 \mathrm{E}-05 & 6.42 \mathrm{E}-05 & 0.829166 & 1.23 \mathrm{E}-05 & 2.82 \mathrm{E}-0\end{array}$ 0.0032861 .006386 $0028020.0043520 .0073921 .07 E-050.000104$ 9.615-05 0.0003013 .214054 0028020.004520 .03756 003286 $\begin{array}{lllllllllllllllll}0.003286 & 0.003518 & 0.004681 & 9.46 \mathrm{E}-06 & 5.57 \mathrm{E}-05 & 5.13 \mathrm{E}-05 & 0.000219 & 2.829608 & 4.19 \mathrm{E}-05 & 9.62 \mathrm{E}-06\end{array}$
0.0016384 .0960160 .0640966
$0.0032860 .0042460 .0056491 .14 \mathrm{E}-05 \quad 6.73 \mathrm{E}-05 \quad 6.19 \mathrm{E}-050.000265 \quad 3.414714$
$\begin{array}{lllllllllll}0.001638 & 1.567611 & 0.024531 & 0.001278 & 0.001216 & 0.001076 & 0.033718 & 192.3335 & 0.003924 & 0.00107\end{array}$
$\begin{array}{lllllllllll}0.002802 & 0.001461 & 0.002481 & 3.6 \mathrm{E}-06 & 3.5 \mathrm{E}-05 & 3.22 \mathrm{E}-05 & 0.000101 & 1.078783 & 1.26 \mathrm{E}-05 & 1.94 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllll}0.003286 & 0.013282 & 0.017673 & 3.57 E-05 & 0.00021 & 0.000194 & 0.000828 & 10.68217 & 0.000158 & 3.63 \mathrm{E}-05\end{array}$
$\begin{array}{llllllllll}0.003286 & 0.001181 & 0.001571 & 3.17 \mathrm{E}-06 & 1.87 \mathrm{E}-05 & 1.72 \mathrm{E}-05 & 7.36 \mathrm{E}-05 & 0.949597 & 1.41 \mathrm{E}-05 & 3.23 \mathrm{E}-06\end{array}$
$\begin{array}{lllllllllll}0.003286 & 0.007084 & 0.009426 & 1.9 \mathrm{E}-05 & 0.000112 & 0.000103 & 0.000441 & 5.697584 & 8.44 \mathrm{E}-05 & 1.94 \mathrm{E}-05\end{array}$
0.0016381 .1645990 .0182240 .0009490 .0009040 .0007900 .02505142 .88710 .0029150 .000795
0.0032860 .0030650 .004078 8.24E-06 $4.86 \mathrm{E}-05 \quad 4.47 \mathrm{E}-050.0001912 .465116$ 3.65E-05 $8.38 \mathrm{E}-06$
$0.0032860 .0016340 .0021744 .39 \mathrm{E}-06 \quad 2.59 \mathrm{E}-05 \quad 2.38 \mathrm{E}-050.000102 \quad 1.314089 \quad 1.95 \mathrm{E}-05 \quad 4.47 \mathrm{E}-06$
$\begin{array}{llllllllllllllllllllll}0.001638 & 7.90906 & 0.123764 & 0.006446 & 0.006136 & 0.005428 & 0.170118 & 970.3794 & 0.019799 & 0.005397\end{array}$
$0.0028020 .0003720 .000631 \quad 9.16 \mathrm{E}-07 \quad 8.91 \mathrm{E}-06$
$0.0028020 .0007040 .0011951 .74 \mathrm{E}-061.69 \mathrm{E}-051.55 \mathrm{E}-05 \quad 4.87 \mathrm{E}-050.519668$ 6.07E-06 $9.36 \mathrm{E}-07$
0.0032860 .0064020 .008518 1.72E-05 0.000101 9.33E-05 $0.000399 \begin{array}{lllllllllllllll} & 5.148715 & 7.63 \mathrm{E}-05 & 1.75 \mathrm{E}-05\end{array}$
0.0032860 .000568 0.000756 $1.53 \mathrm{E}-06 \quad 9.01 \mathrm{E}-06$ 8.29E-06 $3.54 \mathrm{E}-05 \quad 0.457214 \quad 6.78 \mathrm{E}-06 \quad 1.55 \mathrm{E}-06$
$\begin{array}{lllllllllllll}0.003286 & 0.003414 & 0.004542 & 9.18 \mathrm{E}-06 & 5.41 \mathrm{E}-05 & 4.98 \mathrm{E}-05 & 0.000213 & 2.745413 & 4.07 \mathrm{E}-05 & 9.33 \mathrm{E}-06\end{array}$
$\begin{array}{llllllllllllllllllll}0.001638 & 11.78237 & 0.184376 & 0.009603 & 0.009141 & 0.008087 & 0.25343 & 1445.604 & 0.029495 & 0.0080\end{array}$
Totals 27.814770 .6119010 .0229160 .0236360 .0209860 .6037193502 .1210 .0708470 .019239

Study Description
2029 Construction Schedule

EMISSIONS INVENTORY - DETAILS:

Non-Road Sources
Units for Non-Greenhouse Gases Emission: Short Ton

Scenario IIYear
1 ${ }_{2029}$ Project Constructi Equipment 2029 Building - : Concrete F Backhoe
2029 Building - : Concrete F Concrete Ready Mix Trucks 2029 Building - : Concrete F Fork Truck 2029 Building - Concrete FTractor Trailer- Material Delivery 2029 Building - : Constructi Survey Crew Trucks 2029 Building - :Constructi Tractor Trailers Temp Fac. 2029 Building - : Exterior W Fork Truck 2029 Building - : Exterior WMan Lift 2029 Building - Exterior WTool Truck 2029 Building - : Exterior W Tractor Trailer- Material Delivery 2029 Building - : Interior BLFork Truck 2029 Building - : Interior BL Man Lift 2029 Building - : Interior BLTool Truck 2029 Building - Interior BU Tractor Trailer- Material Delivery 2029 Building : : Roofing High Lift 2029 Building - : Roofing Man Lift (Fascia Construction) 2029 Building - : Roofing Material Deliveries 2029 Building : : Roofing Tractor Trailer- Material Delivery 2029 Building - : Security \& High Lift 2029 Building - : Security \& Tool Truck 2029 Building - : Structural 40 Ton Crane 2029 Building - : Structural Fork Truck 2029 Building - : Structural Tool Truck 2029 Building - :Structural Tractor Trailer- Steel Deliveries 2029 Building - :Concrete FBackhoe 2029 Building - : Concrete F Concrete Ready Mix Trucks 2029 Building - : Concrete F Fork Truck 2029 Building - : Concrete FTool Truck 2029 Building - Concrete FTractor Trailer- Material Delivery 2029 Building - :Constructi Survey Crew Trucks 2029 Building - :Constructi Tractor Trailers Temp Fac. 2029 Building - :Exterior W Fork Truck 2029 Building - : Exterior W Man Lift 2029 Building - : Exterior WTool Truck 2029 Building - : Exterior W Tractor Trailer- Material Delivery 2029 Building - Interior BLFork Truck 2029 Building - Interior BU Tool Truck 2029 Building - : Interior BLTool Truck 2029 Building - : Interior BLTractor Trailer- Material Delivery 2029 Building - : Roofing High Lift 2029 Building - : Roofing Man Lift (Fascia Construction) 2029 Building - :Roofing Material Deliveries 2029 Building - : Roofing Tractor Trailer- Material Delivery 2029 Building - : Security \& High Lift 2029 Building - : Security \& Tool Truck 2029 Building - : Structural 40 Ton Crane 2029 Building - :Structural Fork Truck 2029 Building - : Structural Tool Truck 2029 Building - :Structural Tractor Trailer- Steel Deliveries 2029 Access Ro¿Asphalt PliAsphalt Paver 2029 Access RoءAsphalt Pli Dump Truck 2029 Access Ro Asphalt Pli Other General Equipment 2029 Access Ro:Asphalt Pli Pickup Truck 2029 Access RocAsphalt Pli Roller
2029 Access Ro:Asphalt Pli Skid Steer Loader 2029 Access Ro:Asphalt Pli Surfacing Equipment (Grooving) 2029 Access Ro: Clearing aıChain Saw

MovesLookup Fuel
Tractors/Loaders/Bac Diesel Off-highway Trucks60Diese Other Construction Ec Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Off-highway Trucks60Diesel Off-highway Trucks60 Diesel Rough Terrain ForkliftDiesel Off-highway Trucks60Diesel Off-highway Trucks60Diesel Other Construction
Other Construction EcDiesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Rough Terrain Forklift Diesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Cranes300 Diesel
Other Construction Ec Diesel Other Construction EcDiesel
Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Tractors/Loaders/Bac Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel Off-highway Trucks60 Diesel Off-highway Trucks60Diesel Off-highway Trucks60 Diesel Off-highway Trucks60Diesel Other Construction Ec Diesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel Rough Terrain Forklift Diesel Off-highway Trucks60Diesel Off-highway Trucks60 Diesel Rough Terrain Forklift Diesel Rough Terrain Forklift Diese Rough Terrain Forkliff Diesel
Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel
Off-highway Trucks60 Diesel Rough Terrain Forklift Diesel Off-highway Trucks60 Diesel Cranes300 Diesel
Other Construction Ec Diesel Other Construction Ec Diesel Off-highway Trucks60 Diesel Off-highway Trucks60 Diesel Pavers175 Diesel Off-highway Trucks60 Diesel Other Construction Ec Diesel
Off-highway Trucks60 Diesel Rollers100 Diesel Skid Steer Loaders75 Diesel Other Construction Ec Diesel

HP Averag Load Factc Hours of ACO NOx CO2 SO2 PM10 PM2.5 VOC CO (tpy) NOx (tpy) CO2 (tpy) SO2 (tpy) PM10 (tpy PM2.5 (tpyVOC Exhaust (tpy) $100 \quad 0.21 \quad 3201.2040041 .655201695 .5091 \quad 0.001950 .1731530 .1679590 .1686020 .0089190 .0122615 .1520331 .44 \mathrm{E}-050.0012830 .0012440 .001249$ $\begin{array}{lllllllllllllllllllll}60 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000492 & 0.002686 & 12.56826 & 3.31 E-05 & 0.000155 & 0.00015\end{array}$ $\begin{array}{llllllllllllllllllllllll}320 & 0.257143 & 1.051294 & 596.0884 & 0.0016 & 0.041189 & 0.039953 & 0.023925 & 0.005352 & 0.021879 & 12.40564 & 3.33 \mathrm{E}-05 & 0.000857 & 0.000831 & 0.000498\end{array}$ $800.0209970 .114717 \quad 536.80190 .0014140 .0066120 .0064130 .009710 .0006550 .00358116 .75768$ 4.41E-05 0.000206 $\begin{array}{lllllllllllllllll}16 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000131 & 0.000716 & 3.351535 & 8.83 \mathrm{E}-06 & 4.13 \mathrm{E}-05 & 4 \mathrm{E}-05 & 6.06 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}10 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 8.19 \mathrm{E}-05 & 0.000448 & 2.09471 & 5.52 \mathrm{E}-06 & 2.58 \mathrm{E}-05 & 2.5 \mathrm{E}-05 \\ 3 & 3.79 \mathrm{E}-05\end{array}$

 12001703470.06828959611030 .0015870 .029969 0.029069 0.016298 $\begin{array}{llllllllllllllllllllll}120 & 0.170347 & 0.968289 & 596.1103 & 0.001587 & 0.029969 & 0.029069 & 0.016298 & 0.001329 & 0.007557 & 4.652286 & 1.24 \mathrm{E}-05 & 0.000234 & 0.000227 & 0.000127\end{array}$ $120 \quad 0.267622 .585271595 .97260 .001593$ 0.027378 0.026556 0.059924 0.000558 0.005386 1.241637 3.32E-06 $\begin{array}{llllllll}5.7 \mathrm{E}-05 & 5.53 \mathrm{E}-05 & 0.000125\end{array}$ 80.0209970 .114717536 .80190 .0014140 .0066120 .006413 0.00971 $6.55 \mathrm{E}-050.0003581 .675768$ 4.41E-06 $2.06 \mathrm{E}-05 \quad 2 \mathrm{EE}-05 \quad 3.03 \mathrm{E}-05$ $\begin{array}{lllllllllllllll}12 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 9.83 \mathrm{E}-05 & 0.000537 & 2.513651 & 6.62 \mathrm{E}-06 & 3.1 \mathrm{E}-05 & 3 \mathrm{E}-05 & 4.55 \mathrm{E}-05\end{array}$ 3200.1703470 .968289596 .11030 .0015870 .0299690 .0290690 .016298 0.003545 0.020152 12.4061 $3.3 \mathrm{E}-050.0006240 .0006050 .000339$ $\begin{array}{llllllllllllllllll}80 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000655 & 0.003581 & 16.75768 & 4.41 \mathrm{E}-05 & 0.000206 & 0.0002 & 0.000303\end{array}$ 2400.0330920 .160772531 .00590 .0014060 .00860 .0083420 .0123340 .0011290 .00548718 .12203 $120 \quad 0.2571431 .051294596 .0884 \quad 0.00160 .0411890 .0399530 .023925$ 0.002007 0.0082054 .652115 1.25E-05 0.0003210 .0003120 .000187 600.0209970 .114717536 .80190 .0014140 .0066120 .00641310 .009710 .0004920 .00268612 .56826 3.31E-05 0.00015500 .000150 .000227 $\begin{array}{llllllllllllll}16 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000131 & 0.000716 & 3.351535 & 8.83 \mathrm{E}-06 & 4.13 \mathrm{E}-05 & 4 \mathrm{E}-05 \\ 6.06 \mathrm{E}-05\end{array}$ $3201.2040041 .655201695 .5091 \quad 0.001950 .1731530 .1679590 .1686020 .0089190 .0122615 .1520331 .44 \mathrm{E}-050.0012830 .0012440 .001249$
 $3200.2571431 .051294596 .0884 \quad 0.00160 .0411890 .0399530 .023925$ 0.005352 $0.02187912 .40564 \quad 3.33 \mathrm{E}-050.0008570 .0008310 .000498$

 $\begin{array}{llllllllllllll}16 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000131 & 0.000716 & 3.351535 & 8.83 \mathrm{E}-06 & 4.13 \mathrm{E}-05 & 4 \mathrm{E}-05 \\ 6.06 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}10 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 8.19 \mathrm{E}-05 & 0.000448 & 2.09471 & 5.52 \mathrm{E}-06 & 2.58 \mathrm{E}-05 & 2.5 \mathrm{E}-05 \\ 3 & 3.79 \mathrm{E}-05\end{array}$ | 4 | 0.020997 | 0.114717 | 536.8019 | 0.001414 | 0.006612 | 0.006413 | 0.00971 | $3.28 \mathrm{E}-05$ | 0.000179 | 0.837884 | $2.21 \mathrm{E}-06$ | $1.03 \mathrm{E}-05$ | $1 \mathrm{E}-05$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $1.52 \mathrm{E}-05$ $\begin{array}{lllllllllllllllll}240 & 0.257143 & 1.051294 & 596.0884 & 0.0016 & 0.041189 & 0.039953 & 0.023925 & 0.004014 & 0.016409 & 9.30423 & 2.5 \mathrm{E}-05 & 0.000643 & 0.000624 & 0.000373\end{array}$

 $\begin{array}{rrrrrrrrrrrrrr}240 & 0.26762 & 2.585271 & 595.9726 & 0.001593 & 0.027378 & 0.026556 & 0.059924 & 0.001115 & 0.010772 & 2.483274 & 6.64 \mathrm{E}-06 & 0.000114 & 0.000111 \\ 60 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000492 & 0.002686 & 12.56826 & 3.31 \mathrm{~F}-05 & 0.000155 & 0.00015\end{array} 0.000227$

 960 0.26762 $2.585271595 .9726 \quad 00015930.027378$ 0.026556 0.059924 $1200.020970 .114717536 .801900014140 .0066120 .0064130 .009710 .0009830005372 \quad 2513651$
 $120 \quad 0.1703470 .968289596110300015870 .029969$ 0.029069 0.0162980 .00132900075574 .1352286

 $\begin{array}{llllllllllllll}120 & 0.26762 & 2.585271 & 595.9726 & 0.001593 & 0.027378 & 0.026556 & 0.059924 & 0.000558 & 0.005386 & 1.241637 & 3.32 \mathrm{E}-06 & 5.7 \mathrm{E}-05 & 5.53 \mathrm{E}-05 \\ 0.0000125\end{array}$ \begin{tabular}{rlllllllllllll}
8 \& 0.020997 \& 0.114717 \& 536.8019 \& 0.001414 \& 0.006612 \& 0.006413 \& 0.00971 \& $6.55 E-05$ \& 0.000358 \& 1.675768 \& $4.41 \mathrm{E}-06$ \& $2.06 \mathrm{E}-05$ \& $2 \mathrm{E}-05$

$3.03 E-05$

\hline

12 \& 0.020997 \& 0.114717 \& 536.8019 \& 0.001414 \& 0.006612 \& 0.006413 \& 0.00971 \& $9.83 \mathrm{E}-05$ \& 0.000537 \& 2.513651 \& $6.62 \mathrm{E}-06$

$320.1 \mathrm{E}-05$ \& $3 \mathrm{E}-05$ \& $4.55 \mathrm{E}-05$

\hline
\end{tabular}

 800.0209970 .114717536 .80190 .0014140 .0066120 .006413 0.00971 $0.0006550 .003581 \quad 16.75768$ 4.41E-05 0.000206 $\begin{array}{llllllllllllllllllllllll}240 & 0.033092 & 0.160772 & 531.0059 & 0.001406 & 0.0086 & 0.008342 & 0.012334 & 0.001129 & 0.005487 & 18.12203 & 4.8 \mathrm{E}-05 & 0.000293 & 0.000285 & 0.000421\end{array}$ $\begin{array}{llllllllllllllllllllll}120 & 0.257143 & 1.051294 & 596.0884 & 0.0016 & 0.04189 & 0.039953 & 0.023925 & 0.002007 & 0.008205 & 4.652115 & 1.25 E-05 & 0.000321 & 0.000312 & 0.000187\end{array}$ 600.0209970 .114717536 .80190 .0014140 .0066120 .00641300 .009710 .0004920 .00268612 .56826 3.311-05 0.000155000000150 .000227

 $\begin{array}{llllllllllllllllllllllll}16.87068 & 0.020997 & 0.114717 & 536.8019 & 0.001414 & 0.006612 & 0.006413 & 0.00971 & 0.000138 & 0.000755 & 3.533918 & 9.31 \mathrm{E}-06 & 4.35 \mathrm{E}-05 & 4.22 \mathrm{E}-05 & 6.39 \mathrm{E}-05\end{array}$ 9.36850 .1217760 .362552536 .77190 .0014410 .0294780 .0285940 .020568 9.46E-05 $0.0002820 .417131 \quad 1.12 \mathrm{E}-06$ 4.684250 .0209970 .114717536 .80190 .0014140 .0066120 .006413 0.00971 $\begin{array}{lllllllllll} & 3.84 \mathrm{E}-05 & 0.00021 & 0.981214 & 2.59 \mathrm{E}-06 & 1.21 \mathrm{E}-05 & 1.17 \mathrm{E}-05 & 1.77 \mathrm{E}-05\end{array}$
 $4.68425 \quad 2.2967323 .549123694 .75740 .0020870 .2958930 .2870160 .4219880 .0001870 .0002890 .056502 \quad 1.7 \mathrm{E}-07 \quad 2.41 \mathrm{E}-05 \quad 2.33 \mathrm{E}-05 \quad 3.43 \mathrm{E}-05$ $\begin{array}{lllllllllllllllllllllll}5.99584 & 1.488865 & 3.762482 & 595.1518 & 0.002188 & 0.170484 & 0.16537 & 0.351645 & 0.000145 & 0.000367 & 0.05802 & 2.13 \mathrm{E}-07 & 1.66 \mathrm{E}-05 & 1.61 \mathrm{E}-05 & 3.43 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllllllllllllll}12 & 2.460678 & 4.183555 & 593.7556 & 0.002183 & 0.238948 & 0.23178 & 0.837843 & 0.000251 & 0.000426 & 0.060476 & 2.22 \mathrm{E}-07 & 2.43 \mathrm{E}-05 & 2.36 \mathrm{E}-05 & 8.53 \mathrm{E}-05\end{array}$

The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
Crack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)

CH4 N2O CO NOX SO2 PM10 PM2.5 VOC CO2 CH4 N2O $0.0147210 .0032860 .003113 \quad 0.00422 \quad 8.38 \mathrm{E}-06 \quad 6.14 \mathrm{E}-05 \quad 5.65 \mathrm{E}-050.000211 \quad 2.507633$ $\begin{array}{lllllllllll}0.014721 & 0.003286 & 0.001659 & 0.00225 & 4.47 \mathrm{E}-06 & 3.27 \mathrm{E}-05 & 3.01 \mathrm{E}-05 & 0.000113 & 1.336754 & 2 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.006472 & 0.001659 & 11.25489 & 0.202701 & 0.008865 & 0.008422 & 0.00745 & 0.246979 & 1334.448 & 0.028671 & 0.007347\end{array}$ $\begin{array}{lllllllllll}0.018588 & 0.002802 & 0.000376 & 0.000647 & 9.34 \mathrm{E}-07 & 9.72 \mathrm{E}-06 & 8.94 \mathrm{E}-06 & 2.69 \mathrm{E}-05 & 0.279476 & 3.28 \mathrm{E}-06 & 4.94 \mathrm{E}-07\end{array}$ $\begin{array}{lllllllllllll}0.014721 & 0.003286 & 0.003113 & 0.00422 & 8.38 \mathrm{E}-06 & 6.14 \mathrm{E}-05 & 5.65 \mathrm{E}-05 & 0.000211 & 2.507633 & 3.75 \mathrm{E}-05 & 8.38 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.014721 & 0.003286 & 0.001659 & 0.00225 & 4.47 \mathrm{E}-06 & 3.27 \mathrm{E}-05 & 3.01 \mathrm{E}-05 & 0.000113 & 1.336754 & 2 \mathrm{E}-05 & 4.47 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllllllll}0.006472 & 0.001659 & 0.190761 & 0.003436 & 0.00015 & 0.000143 & 0.000126 & 0.004186 & 22.61777 & 0.000486 & 0.000125\end{array}$ $\begin{array}{llllllllllll}0.018588 & 0.002802 & 0.000376 & 0.000647 & 9.34 \mathrm{E}-07 & 9.72 \mathrm{E}-06 & 8.94 \mathrm{E}-06 & 2.69 \mathrm{E}-05 & 0.279476 & 3.28 \mathrm{E}-06 & 4.94 \mathrm{E}-0\end{array}$ $\begin{array}{lllllllllll}0.018588 & 0.002802 & 0.001153 & 0.001981 & 2.86 \mathrm{E}-06 & 2.98 \mathrm{E}-05 & 2.74 \mathrm{E}-05 & 8.23 \mathrm{E}-05 & 0.855894 & 1 \mathrm{E}-05 & 1.51 \mathrm{E}-06\end{array}$ | 0.018588 | 0.002802 | 0.001153 | 0.001981 | $2.86 \mathrm{E}-06$ | $2.98 \mathrm{E}-05$ | $2.74 \mathrm{E}-05$ | $8.23 \mathrm{E}-05$ | 0.855894 | $1 \mathrm{E}-05$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1.51 \mathrm{E}-06$ | | | | | | | | | |
| 0.014721 | 0.003286 | 0.010506 | 0.014244 | $2.83 \mathrm{E}-05$ | 0.000207 | 0.000191 | 0.000713 | 8.463939 | 0.000127 | $\begin{array}{llllllllllll}0.014721 & 0.003286 & 0.010506 & 0.014244 & 2.83 \mathrm{E}-05 & 0.000207 & 0.000191 & 0.000713 & 8.463939 & 0.000127 & 2.83 \mathrm{E}-05 \\ 0.014721 & 0.003286 & 0.000934 & 0.001266 & 2.52 \mathrm{E}-06 & 1.84 \mathrm{E}-05 & 1.69 \mathrm{E}-05 & 6.34 \mathrm{E}-05 & 0.752398 & 1.13 \mathrm{E}-05 & 2.51 \mathrm{E}-06\end{array}$ $\begin{array}{llllllllllll}0.014721 & 0.003286 & 0.000934 & 0.001266 & 2.52 \mathrm{E}-06 & 1.84 \mathrm{E}-05 & 1.69 \mathrm{E}-05 & 6.34 \mathrm{E}-05 & 0.752398 & 1.13 \mathrm{E}-05 & 2.51 \mathrm{E}-06 \\ 0.014721 & 0.003286 & 0.005604 & 0.007597 & 1.51 \mathrm{E}-05 & 0.000111 & 0.000102 & 0.00038 & 4.51439 & 6.76 \mathrm{E}-05 & 1.51 \mathrm{E}-05\end{array}$ 0.014210 .0032860 .0102080 $\begin{array}{llllllllllll}0.006472 & 0.001659 & 11.02086 & 0.198486 & 0.00868 & 0.008247 & 0.007296 & 0.241844 & 1306.701 & 0.028075 & 0.007194\end{array}$ $\begin{array}{llllllllllll}2.495 & 0.443943 & 0.017772 & 0.017386 & 0.0154 & 0.49495 & 2686.601 & 0.05757 & 0.01474\end{array}$

STUDY

Study Name
Austin Airport

Study Description
2030 Construction Schedule

EMISSIONS INVENTORY - DETAILS:

Non-Road Sources
Units for Non-Greenhouse Gases Emission: Short Ton Units for Greenhouse Gases ($\mathrm{CO} 2, \mathrm{CH} 4$, and N2O) Emission: Metric Ton

Scenario IIYear Project Constructi Equipmen

 2030 Building - : Concrete FConcrete Ready Mix Trucks 2030 Building - Concrete FFork Truck 2030 Building - Concrete FTool Truck 2030 Building - : Concrete FTractor Trailer- Material Delivery 2030 Building - : Constructi Survey Crew Trucks 2030 Building - : Constructi Tractor Trailers Temp Fac. 2030 Building - : Exterior WFork Truck 2030 Building - :Exterior W Man Lift 2030 Building - : Exterior WTool Truck 2030 Building - :Exterior WTractor Trailer- Material Delivery 2030 Building - : Interior BuMan Lift 2030 Building - : Interior BuTool Truck 2030 Building - : Interior BuTractor Trailer- Material Delivery 2030 Building - : Roofing High Lift 2030 Building - Roofing Man Lift (Fascia Construction) 2030 Building - : Roofing Material Deliveries 2030 Building - : Roofing Tractor Trailer- Material Delivery 2030 Building - : Security \& High Lift 2030 Building - :Security \& Tool Truck 2030 Building - : Structural 40 Ton Crane 2030 Building - :Structural Fork Truck 2030 Building - :Structural Tool Truck 2030 Building - : Structural Tractor Trailer- Steel Deliveries 2030 Building - :Concrete FBackhoe 2030 Building - : Concrete FConcrete Ready Mix Trucks 2030 Building - : Concrete FFork Truck 2030 Building - Concrete FTool Truck 2030 Building - : Concrete FTractor Trailer- Mate 2030 Building - : Constructi Tractor Trailers Temp Fac. 2030 Building - : Exterior WFork Truck 2030 Building - : Exterior W Man Lift 2030 Building - : Exterior WTool Truck 2030 Building - :Exterior WTractor Trailer- Material Delivery 2030 Building - : Interior BuFork Truck 2030 Building - Interior BuTol Truck 2030 Building - : Interior BuTractor Trailer- Material Delivery 2030 Building - : Roofing High Lif 2030 Building - : Roofing Man Lift (Fascia Construction) 2030 Building - :Roofing Material Deliveries 2030 Building - : Roofing Tractor Trailer-Material Delivery 2030 Building - : Security \& High Lift 2030 Building - :Security \& Tool Truck 2030 Building - :Structural 40 Ton Crane 2030 Building - Structural Fork Truck 2030 Building - :Structural Tool Truck 2030 Building - :Structural Tractor Trailer- Steel Deliveries 2030 Access RoiAsphalt PlaAsphalt Paver 2030 Access Ro:Asphalt Plì Dump Truck 2030 Access RǒAsphalt PlaOther General Equipment 2030 Access RǒAsphalt PlaPickup Truck 2030 Access Roc Asphalt Pli Roller 2030 Access Ro: Asphalt PleSkid Steer Loader 2030 Access Ro:Clearing arChain SawMovesLoo Fuel Tractors/LDiesel Off-highw: Diesel Other Con Diesel Off-highw: Diesel Off-highw: Diesel Off-highw:Diesel Off-highwi Diesel Off-highw: Diesel
Other Con Diesel Rough Ter Diesel Rough Ter Diese
Off-highw:Diesel Off-highw: Diesel Other Con Diesel Rough Ter Diesel Rough Ter Diese Off-highw: Diese Off-highw: Diesel Rough Ter Diesel Rough Ter Diesel Off-highw: Diesel
Off-highw: Diesel Off-highw: Diesel
Rough Ter Diesel Off-highw: Diesel Cranes 300 Diesel Other Con: Diesel Off-highw: Diesel Off-highw: Diesel Tractors/LD Diesel Off-highw: Diesel Other Con: Diesel Off-highw: Diesel Off-highw: Diesel Off-highwi Diesel
Off-highw: Diesel Other Con Diesel Rough Ter Diesel Off-highw:Diesel Off-highw: Diesel
Off-highwi Diesel Off-highwi Diesel Other Con Diesel Rough TerDiese
Off-highw: Diesel Off-highw: Diese Rough Teri Diesel Rough Ter Diesel Off-highw: Diesel Off-highw: Diesel Rough Ter Diesel Off-highw: Diesel Cranes 300 Diesel Other Con Diesel Off-highw: Diesel Off-highw: Diesel Pavers175 Diesel Off-highw: Diesel Other Con: Diesel Off-highw: Diesel Rollers100Diesel Skid Steer Diesel Other Con Diesel
 $\begin{array}{lllllllllllllllllllllllllll}100 & 0.21 & 320 & 1.038687 & 1.547273 & 695.5805 & 0.001933 & 0.149671 & 0.145181 & 0.144229 & 0.007694 & 0.011462 & 5.152561 & 1.43 \mathrm{E}-05 & 0.001109 & 0.001075 & 0.001068\end{array}$
 3200.1954760 .994937596 .10290 .0015910 .0327260 .0317440 .019038 0.004068 0.02070612 .40594 3.31E-05 0.0006810 .0006610 .000396 800.0198040 .112642536 .8020 .0014140 .0063870 .0061960 .0095610 .000618 0.003516 $16.757684 .41 \mathrm{E}-050.0001990 .0001930 .000298$ $\begin{array}{llllllllllllllllllllllllllll}16 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 0.000124 & 0.000703 & 3.351536 & 8.83 E-06 & 3.99 E-05 & 3.87 E-05 & 5.97 E-05\end{array}$ $\begin{array}{llllllllllllllll}10 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 7.73 \mathrm{E}-05 & 0.00044 & 2.09471 & 5.52 \mathrm{E}-06 & 2.49 \mathrm{E}-05 & 2.42 \mathrm{E}-05 & 3.73 \mathrm{E}-05\end{array}$ $40.0198040 .112642 \quad 536.8020 .001414 \quad 0.0063870 .0061960 .009561$ $240 \quad 0.195476$
 $\begin{array}{llllllllllllllllllll}60 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 0.000464 & 0.002637 & 12.56826 & 3.31 \mathrm{E}-05 & 0.00015 & 0.000145 & 0.000224\end{array}$

 $\begin{array}{llllllllllllllllllllllllll}120 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 0.000927 & 0.005275 & 25.13652 & 6.62 \mathrm{E}-05 & 0.000299 & 0.00029 & 0.000448\end{array}$ 1200.0198040 .112642506 $\begin{array}{llllllllllllllllllll}120 & 0.130506 & 0.931858 & 596.1206 & 0.001581 & 0.024524 & 0.023789 & 0.012905 & 0.001019 & 0.007273 & 4.652366 & 1.23 \mathrm{E}-05 & 0.000191 & 0.000186 & 0.000101\end{array}$ $\begin{array}{rrrrrrrrrrrrr}120 & 0.237794 & 2.569426 & 595.9823 & 0.001586 & 0.023765 & 0.023052 & 0.056571 & 0.000495 & 0.005353 & 1.241657 & 3.3 \mathrm{E}-06 & 4.95 \mathrm{E}-05 \\ 8 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 6.18 \mathrm{E}-05 & 0.000352 & 1.675768 & 4.41 \mathrm{E}-06 & 1.99 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllll}8 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 6.18 \mathrm{E}-05 & 0.000352 & 1.675768 & 4.41 \mathrm{E}-06 & 1.99 \mathrm{E}-05 \\ 1.93 \mathrm{E}-05 & 2.98 \mathrm{E}-05 \\ 12 & 0.019804 & 0112642 & 536802 & 0.001414 & 0.006387 & 0.0065 & 0.05 & \end{array}$ $\begin{array}{lllllllllllllll}12 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 9.27 \mathrm{E}-05 & 0.000527 & 2.513652 & 6.62 \mathrm{E}-06 & 2.99 \mathrm{E}-05 & 2.9 \mathrm{E}-05 & 4.48 \mathrm{E}-05\end{array}$ 3200.1305060 .931858596 .12060 .0015810 .0245240 .0237890 .0129050 .002716 0.019394 $12.40631 \quad 3.29 \mathrm{E}-05$ 0.00051 0.0004950 .000269 $\begin{array}{lllllllllllllllll}80 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 0.000618 & 0.003516 & 16.75768 & 4.41 \mathrm{E}-05 & 0.000199 & 0.000193 & 0.000298\end{array}$ 2400.0286470 .145715531 .00890 .0014040 .0077790 .0075450 .0114030 .0009780 .00497318 .12213 4.79E-05 0.0002650 .0002580 .00038 $1200.1954760 .994937596 .10290 .0015910 .0327260 .0317440 .0190380 .0015260 .0077654 .6522291 .24 \mathrm{E}-050.0002550 .0002480 .000149$ 600.0198040 .112642536 .8020 .0014140 .0063870 .0061960 .0095610 .0004640 .00263712 .56826 3.31E-05 0.000150 .0001450 .000224
 3201.0386871 .547273695 .58050 .0019330 .1496710 .1451810 .1442290 .0076940 .0114625 .152561 1.43E-05 0.0011090 .0010750 .001068 600.0198040 .112642536 .8020 .0014140 .0063870 .0061960 .0095610 .0004640 .00263712 .56826 3.31E-05 0.000150 .0001450 .000224 $320 \quad 0.1954760 .994937596 .10290 .0015910 .0327260 .0317440 .019038$ 0.004068 $0.02070612 .4059433 .31 \mathrm{E}-050.0006810 .0006610 .000396$ 800.0198040 .112642536 .8020 .0014140 .0063870 .0061960 .0095610 .000618 0.003516 16.75768 4.41E-05 0.0001990 .0001930 .000298
 $\begin{array}{llllllllllllllll}10 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 7.73 \mathrm{E}-05 & 0.00044 & 2.09471 & 5.52 \mathrm{E}-06 & 2.49 \mathrm{E}-05 & 2.42 \mathrm{E}-05 & 3.73 \mathrm{E}-05\end{array}$ $\begin{array}{lllllllllllllllllllll}4 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 3.09 \mathrm{E}-05 & 0.000176 & 0.837884 & 2.21 \mathrm{E}-06 & 9.97 \mathrm{E}-06 & 9.67 \mathrm{E}-06 & 1.49 \mathrm{E}-05\end{array}$
 $\begin{array}{llllllllllllllllllll}240 & 0.237794 & 2.569426 & 595.9823 & 0.001586 & 0.023765 & 0.023052 & 0.056571 & 0.000991 & 0.010706 & 2.483314 & 6.61 \mathrm{E}-06 & 9.9 \mathrm{E}-05 & 9.61 \mathrm{E}-05 & 0.000236\end{array}$ $\begin{array}{llllllllllllllllll}60 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 0.000464 & 0.002637 & 12.56826 & 3.31 \mathrm{~F}-05 & 0.00015 & 0.000145 & 0.000224\end{array}$ $\begin{array}{lllllllllllllllllllllll}24 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 0.000185 & 0.001055 & 5.027304 & 1.32 \mathrm{E}-05 & 5.98 \mathrm{E}-05 & 5.8 \mathrm{E}-05 & 8.95 \mathrm{E}\end{array}$

 $120-019804-1126425368020.001414$ 120.01984 $1200.130506 \quad 0.031858$ 120 120 $\begin{array}{rrrrrrrrrrrrr}120 & 0.237794 & 2.569426 & 595.9823 & 0.001586 & 0.023765 & 0.023052 & 0.056571 & 0.000495 & 0.005353 & 1.241657 & 3.3 \mathrm{E}-06 & 4.95 \mathrm{E}-05 \\ 8 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 6.18 \mathrm{E}-05 & 0.000352 & 1.675768 & 4.41 \mathrm{E}-06 & 1.09 \mathrm{E}-05\end{array} 1.93 \mathrm{E}-05 \quad 2.98 \mathrm{E}-05$ $\begin{array}{rrrrrrrrrrrr}8 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 6.18 \mathrm{E}-05 & 0.000352 & 1.675768 & 4.41 \mathrm{E}-06 \\ 12 & 1.99 \mathrm{E}-05 & 1.93 \mathrm{E}-05 & 2.98 \mathrm{E}-05 \\ 12 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 9.27 \mathrm{E}-05 & 0.000527 & 2.513652 & 6.62 \mathrm{E}-06 \\ 2.99 \mathrm{E}-05 & 2.9 \mathrm{E}-05 & 4.48 \mathrm{E}-05\end{array}$ $\begin{array}{llllllllllllll}12 & 0.019804 & 0.112642 & 536.802 & 0.001414 & 0.006387 & 0.006196 & 0.009561 & 9.27 \mathrm{E}-05 & 0.000527 & 2.513652 & 6.62 \mathrm{E}-06 & 2.99 \mathrm{E}-05 & 2.9 \mathrm{E}-05 \\ 4.48 \mathrm{E}-05 \\ 320 & 0.130506 & 0.931858 & 596.1206 & 0.001581 & 0.024524 & 0.023789 & 0.012905 & 0.002716 & 0.019394 & 12.40631 & 3.29 \mathrm{E}-05 & 0.00051 & 0.000495\end{array}$ 3200.1305060 .931858596 .12060 .0015810 .0245240 .0237890 .0129050 .0027160 .01939412 .40631 $800.019804 \quad 0.112642 \quad 536.8020 .0014140 .0063870 .0061960 .0095610 .000618$ 0.003516 $16.757684 .41 \mathrm{E}-050.0001990 .0001930 .000298$ $2400.0286470 .145715531 .00890 .0014040 .0077790 .0075450 .0114030 .0009780 .00497318 .1221344 .79 \mathrm{E}-050.0002650 .0002580 .000389$ $\begin{array}{lllllllllllllllllll}120 & 0.195476 & 0.994937 & 596.1029 & 0.001591 & 0.032726 & 0.031744 & 0.019038 & 0.001526 & 0.007765 & 4.652229 & 1.24 \mathrm{E}-05 & 0.000255 & 0.000248 & 0.000149\end{array}$ $600.0198040 .112642 \quad 536.8020 .0014140 .0063870 .0061960 .0095610 .0004640 .00263712 .56826$ 3.31E-05 0.000150 .0001450 .000224 160.0198040 .112642536 .8020 .0014140 .0063870 .006196 0.009561 $0.0001240 .0007033 .35153688 .83 \mathrm{E}-06$ $\begin{array}{lllllllllllllllll}1.171 & 0.060462 & 0.194501 & 536.8032 & 0.001418 & 0.013881 & 0.013465 & 0.009825 & 8.06 E-06 & 2.59 E-05 & 0.071543 & 1.89 E-07 & 1.85 E-06 & 1.79 E-06 & 1.31 E-06\end{array}$ $4.2174450 .0198040 .112642 \quad 536.8020 .0014140 .0063870 .0061960 .009561$ $\begin{array}{llllllllllllllll}2.342 & 0.099762 & 0.310391 & 536.7827 & 0.001433 & 0.023905 & 0.023188 & 0.016649 & 1.94 \mathrm{E}-05 & 6.03 \mathrm{E}-05 & 0.104279 & 2.78 \mathrm{E}-07 & 4.64 \mathrm{E}-06 & 4.5 \mathrm{E}-06 & 3.23 \mathrm{E}-06\end{array}$
 $\begin{array}{llllllllllllllllllllll}1.171 & 0.088501 & 0.892622 & 596.1304 & 0.001575 & 0.017975 & 0.017436 & 0.009766 & 6.74 \mathrm{E}-06 & 6.8 \mathrm{E}-05 & 0.0454 & 1.2 \mathrm{E}-07 & 1.37 \mathrm{E}-06 & 1.33 \mathrm{E}-06 & 7.44 \mathrm{E}-07\end{array}$ $\begin{array}{llllllllllllllllllllll}1.171 & 2.123612 & 3.461035 & 694.8576 & 0.002069 & 0.272086 & 0.263923 & 0.388167 & 4.32 \mathrm{E}-05 & 7.04 \mathrm{E}-05 & 0.014127 & 4.21 \mathrm{E}-08 & 5.53 \mathrm{E}-06 & 5.37 \mathrm{E}-06 & 7.89 \mathrm{E}-06\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllll}3.6 & 2.459739 & 4.183456 & 593.7551 & 0.002183 & 0.238707 & 0.231546 & 0.837781 & 7.52 \mathrm{E}-05 & 0.000128 & 0.018143 & 6.67 \mathrm{E}-08 & 7.29 \mathrm{E}-06 & 7.08 \mathrm{E}-06 & 2.56 \mathrm{E}-05\end{array}$
岗

\qquad

 IIIIIIMI Hibellum
M1M MM

On-Road vehicle speeds are not explicitly modeled. The associated emission factors for each modeled vehicle from MOVES represent averages over the driving cycles, the roadway type, and daily temperature variations.
The default equipment hours-of-use data are developed based on the overall size of the project provided by the user and activity rates based on expert engineering judgment.
Under the Construction Activity Type list (Activity Tab), when a choice between asphalt and concrete materials occurs, asphalt is always selected as default. To choose concrete, de-select the aphalt item and select the corresponding concrete item.
Two trips per day were assumed for each on-road material handling trucks.
Only $\mathrm{CO} 2, \mathrm{CH} 4$, and N 2 O are used to represent greenhouse gas emissions. Other potential greenhouse gases including air conditioning refrigerants were not included.
The following equipment are always modeled using diesel emission factors since gasoline-based emission factors are not available:
Asphalt Deliveries/Ten Wheelers
Bulldozer
Concrete Ready Mix Trucks
Concrete Ready Trucks Mix for Cores
Concrete Truck
Crack Filler (Trailer Mounted)
Delivery of Tanks (3)
Distributing Tanker
Dozer
Dump Truck
Dump Truck (12 cy)
$\begin{array}{llllllllllllllllllll}0.002802 & 0.000365 & 0.000607 & 8.87 \mathrm{E}-07 & 7.74 \mathrm{E}-06 & 7.12 \mathrm{E}-06 & 2.38 \mathrm{E}-05 & 0.265851 & 3.12 \mathrm{E}-06 & 4.94 \mathrm{E}-07\end{array}$
$\begin{array}{lllllllllllllll}0.003286 & 0.002997 & 0.003845 & 7.98 \mathrm{E}-06 & 3.53 \mathrm{E}-05 & 3.25 \mathrm{E}-05 & 0.000161 & 2.389774 & 3.51 \mathrm{E}-05 & 8.38 \mathrm{E}-0\end{array}$
$\begin{array}{lllllllllll}0.003286 & 0.001597 & 0.00205 & 4.25 \mathrm{E}-06 & 1.88 \mathrm{E}-05 & 1.73 \mathrm{E}-05 & 8.57 \mathrm{E}-05 & 1.273926 & 1.87 \mathrm{E}-05 & 4.47 \mathrm{E}-0\end{array}$
$\begin{array}{llllllllllllll}0.001579 & 0.15775 & 0.001916 & 0.000141 & 0.000131 & 0.000116 & 0.00339 & 21.23838 & 0.000392 & 0.000119\end{array}$
$\begin{array}{llllllllll}0.002802 & 0.000365 & 0.000607 & 8.87 \mathrm{E}-07 & 7.74 \mathrm{E}-06 & 7.12 \mathrm{E}-06 & 2.38 \mathrm{E}-05 & 0.265851 & 3.12 \mathrm{E}-06 & 4.94 \mathrm{E}-07\end{array}$
$\begin{array}{llllllllll}0.002802 & 0.000365 & 0.000607 & 8.87 \mathrm{E}-07 & 7.74 \mathrm{E}-06 & 7.12 \mathrm{E}-06 & 2.38 \mathrm{E}-05 & 0.265851 & 3.12 \mathrm{E}-06 & 4.94 \mathrm{E}-07\end{array}$
$\begin{array}{llllllllll}0.002802 & 0.000278 & 0.000463 & 6.77 \mathrm{E}-07 & 5.9 \mathrm{E}-06 & 5.43 \mathrm{E}-06 & 1.82 \mathrm{E}-05 & 0.202712 & 2.38 \mathrm{E}-06 & 3.77 \mathrm{E}-07\end{array}$
$\begin{array}{llllllllll}0.003286 & 0.002529 & 0.003245 & 6.73 \mathrm{E}-06 & 2.98 \mathrm{E}-05 & 2.74 \mathrm{E}-05 & 0.000136 & 2.016791 & 2.96 \mathrm{E}-05 & 7.07 \mathrm{E}-06\end{array}$

0.003286	0.000224	0.000288	$5.97 \mathrm{E}-07$	$2.64 \mathrm{E}-06$	$2.43 \mathrm{E}-06$	$1.2 \mathrm{E}-05$	0.178742	$2.62 \mathrm{E}-06$
$6.27 \mathrm{E}-07$								
0.003286	0.001349	0.00173	$3.59 \mathrm{E}-06$	$1.59 \mathrm{E}-05$	$1.46 \mathrm{E}-05$	$7.24 \mathrm{E}-05$	1.075553	$1.58 \mathrm{E}-05$

$1.58 \mathrm{E}-05 \quad 3.77 \mathrm{E}-06$
$\begin{array}{llllllllllll}0.001579 & 4.574753 & 0.055563 & 0.004092 & 0.003792 & 0.003354 & 0.098306 & 615.913 & 0.011365 & 0.00343\end{array}$

 | \circ | \circ |
| :--- | :--- | $\begin{array}{lll}1.64 \mathrm{E}+01 & 1.39 \mathrm{E}+00 & 1.39 \mathrm{E}+00 \\ 2.45 \mathrm{E}+01 & 2.44 \mathrm{E}+00 & 2.44 \mathrm{E}+00 \\ 2.91 \mathrm{E}+01 & 3.06 \mathrm{E}+00 & 3.06 \mathrm{E}+00\end{array}$ $2.91 \mathrm{E}+01 \quad 3.06 \mathrm{E}+00 \quad 3.06 \mathrm{E}+00$ $6.89 \mathrm{E}+01 \quad 8.54 \mathrm{E}+00 \quad 8.54 \mathrm{E}+00$ $8.49 \mathrm{E}-02 \quad 6.97 \mathrm{E}-03 \quad 6.97 \mathrm{E}-03$ $\begin{array}{llll}2.36 \mathrm{E}+01 & 2.30 \mathrm{E}+00 & 2.30 \mathrm{E}+00\end{array}$ $1.21 \mathrm{E}+01 \quad 1.10 \mathrm{E}+00 \quad 1.10 \mathrm{E}+00$ $\begin{array}{lll}9.01 \mathrm{E}+00 & 7.89 \mathrm{E}-01 & 7.89 \mathrm{E}-01 \\ 7.29 \mathrm{E}+00 & 6.17 \mathrm{E}-01 & 6.17 \mathrm{E}-01\end{array}$ $\begin{array}{lll}9.63 \mathrm{E}+01 & 1.12 \mathrm{E}+01 & 1.12 \mathrm{E}+01 \\ 1.12 \mathrm{E}-01 & 1.06 \mathrm{E}+00 & 1.13 \mathrm{E}+00\end{array}$ $00+\exists ร 0^{\circ} \varepsilon \quad 00+\exists ร 0^{\circ} \varepsilon \quad 00+\exists 98^{\circ} \varepsilon$ －

Operation Mode	Fuel (ST)	Distance (IDuration	CO (ST)	THC (ST)	TOG (ST)	VOC (ST)	NMHC (ST	NOX (ST)	nvPMMas				CO2 (ST)	H2O (ST)	SOx (ST)	PM 2.5 ST	(STPM 10 (ST)
AUS 2027 Startup	0	0 00:00.0	0.00E+00	$3.04 E+01$	$3.51 \mathrm{E}+01$	C0E+01	3.51	0.0		N/A	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	00	0.00E+00	0.00E+00
Out	97	0 20038:	4.50E+02	6.14	7.0	7.03E+01	7.0	+01	4.99E+05	$2.82 \mathrm{E}+22$	7.50E-01	3.51E-0	$5.48 \mathrm{E}+04$	2.1	$2.03 \mathrm{E}+01$	$1.65 \mathrm{E}+00$	
Grou	92	83179.86 20879:00::	4.59E+02	9.27E+01	1.0	1.06E+02	1.07E+02	$2.82 \mathrm{E}+02$	1.25 E+06	$3.39 \mathrm{E}+22$	$1.13 \mathrm{E}+00$	4.44E-01	8.2	3.22E+04	3.05E+01	$2.95 \mathrm{E}+00$	2.95E+00
Below 1000	5	209787 21608:59:	4.73E+02	$9.33 \mathrm{E}+01$	$1.08 \mathrm{E}+02$	1.07E+02	$1.08 \mathrm{E}+02$	$3.97 \mathrm{E}+02$	1.68E+06	$3.71 \mathrm{E}+22$	$1.33 \mathrm{E}+00$	5.06E-01	9.75E+04	3.82E+04	3.62E+01	3.69E+00	3.69E+
b Below Mixing Heig	42590.77	602038.4 23422:51:	5.05E+02	9.48E+01	$1.09 \mathrm{E}+02$	1.09E+02	$1.09 \mathrm{E}+02$	$6.74 \mathrm{E}+02$	$2.76 \mathrm{E}+06$	4.54E+22	$1.84 \mathrm{E}+00$	6.33E-01	$1.34 \mathrm{E}+05$	5.27E+04	4.99E+01	5.51E+00	5.51E+00
S_2027 Climb Below 10000 ft	73342.17	2310966 29118:36:	6.20E+02	9.93E+01	$1.14 \mathrm{E}+02$	$1.14 \mathrm{E}+02$	$1.14 \mathrm{E}+02$	$1.38 \mathrm{E}+03$	5.39E+06	6.53E+22	$2.95 \mathrm{E}+00$	1.53E+00	$2.31 \mathrm{E}+05$	9.07E+04	8.59E+01	1.04E+01	1.04E+
US 2027 Above 10000 ft AFE	46.97204	8406.77 19:02.8	$1.16 \mathrm{E}+00$	6.88E-02	7.95E-02	7.91E-02	7.95E-02	3.54E-01	$1.29 E+03$	$8.80 \mathrm{E}+16$	$1.69 \mathrm{E}-03$	1.41E-03	1.48E+02	5.81E+01	5.50E-02	4.52E-03	4.52E-
00	28785.44	3047243 11632:52:	4.64E+02	$4.46 \mathrm{E}+01$	5.13E+01	5.0	5.1	2.08	$1.22 \mathrm{E}+06$	5.75E+22	$1.22 \mathrm{E}+00$	5.56E-01	9.0	3.56E+04	3.37E+01	3.12E+00	3.12E+
S_2027 Descend Below Mixing Heig	25	1713496 56:54.9	3.5	3.72E+01	4.29E+01	4.2	4.27E+	1.8	1.12E+06	5.3	1.0	4.43E-01	7.89E	3.09	2.93E+01	2.76E+00	2.76E+
S_2027 Descend Below 10	12680	329934.3 49:44.4	$2.40 \mathrm{E}+$	$2.91 \mathrm{E}+$	3.35E+	3.32E+	$3.34 \mathrm{E}+0$	8.18E+	4.52E+05	2.28 E	5.4	2.5	$4.00 \mathrm{E}+$	1.57E	. 49	1.29E+00	
S_2027 Descend	9528.544	52:02	2.05E+	$2.76 \mathrm{E}+$	3.19E+	3.17E+	3.19E+	5.12E+	3.21E+	1.69E+22	4.12E-01	$1.76 \mathrm{E}-$	$3.01 \mathrm{E}+$	1.18E	1.12E	9.41E	9.41
2027	7693.271	02:42.0	$1.99 \mathrm{E}+$	2.72E+	3.14E+	3.12E+	3.13E+	3.08E+	2.21E+	1.25 E	3.32 E	1.55E-	$2.43 \mathrm{E}+$	$9.52 \mathrm{E}+$	$9.01 \mathrm{E}+$	7.31E-01	7.31E-01
S 2027 Full Flight	102174.6	536661640791	1.09E+	1.44E+	$1.66 \mathrm{E}+$	$1.64 \mathrm{E}+02$	$1.65 \mathrm{E}+02$	1.59E+03	6.62E+	$1.23 \mathrm{E}+2$	4.17E+00	2.09E+00	3.22E+0	$1.26 \mathrm{E}+0$	$1.20 \mathrm{E}+0$	$1.36 \mathrm{E}+$	1.36
S_2027 GS	0	02240	$1.70 \mathrm{E}+02$	0.0	7.18	6.63E+	6.33E			N/A	0.00 E	0.00E+	0.00E+	0.00E	1.39E-01	9.69 E	
S 2027 APU											0.00						

Operation Mode	fuel (ST)	Distance	Duration	CO (ST)	THC (ST)	TOG (ST)	VOC (ST)	NMHC (STNOX	NOx(ST)					CO2 (ST)	H2O (ST)	SOx(ST)	PM 2.5	10 (s)
2032_NA_Startup	0	0	00:00.0	$0.00 \mathrm{E}+00$	$3.17 \mathrm{E}+01$	$3.66 \mathrm{E}+01$	$3.64 \mathrm{E}+01$	3.66E+01	0.00E+00	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+0$	0.00E+00
2032_NA_Taxi Out	18051.12		19574:39:	4.72E+02	6.42E+01	$7.41 \mathrm{E}+01$	$7.36 \mathrm{E}+01$	$7.40 \mathrm{E}+01$	7.23E+01	5.22E+05	$3.00 \mathrm{E}+22$	7.80E-01	3.67E-01	5.70E+04	$2.23 \mathrm{E}+04$	2.1	1.7	1.72E+00
2032_NA_Climb Gro	27168.82		20392:19:	4.81E+02	9.68	1.1	1.1	1.1	2.97	1.29 E	3.59	1.17	4.6	8.5	$3.36 \mathrm{E}+04$	$3.18 \mathrm{E}+01$	$3.05 \mathrm{E}+00$	3.05E+00
2032_NA Climb	216	21	21108:38	$4.95 \mathrm{E}+02$	9.74E+01	$1.12 \mathrm{E}+02$	1.12	$1.12 \mathrm{E}+02$	4.16E+02	$1.72 \mathrm{E}+06$	$3.93 \mathrm{E}+22$	$1.39 \mathrm{E}+00$	5.25E-01	$1.01 \mathrm{E}+05$	3.98E	3.77E+01	$3.81 \mathrm{E}+00$	
2032_NA_Clim	307.27	62	22882:54:	5.28E+02	9.90E+01	+02	+02	+02	7.06E+02	+06	+22	00	6.53E-01	+0	5.48E+04	5.19E+01	$5.68 \mathrm{E}+00$	5.68E+00
2032_NA_Climb Bel	76298.72	23	28478:34	6.45E+02	$1.04 \mathrm{E}+02$	$1.19 \mathrm{E}+02$	$1.18 \mathrm{E}+02$	$1.19 \mathrm{E}+02$	1.45E+03	$5.51 \mathrm{E}+06$	6.85E+22	3.07E+00	$1.59 \mathrm{E}+00$	2.41	$9.44 \mathrm{E}+04$	8.94	1.0	1.07E+0
2032_NA_Above 10	4	8420.11	19:02.8	$1.16 \mathrm{E}+00$	6.89E-02	7.96E-02	7.92E-02	7.96E-02	$3.55 \mathrm{E}-01$	$1.29 \mathrm{E}+03$	9.13E	$1.69 \mathrm{E}-03$	$1.41 \mathrm{E}-03$	$1.48 \mathrm{E}+02$	5.82E+01	$5.51 \mathrm{E}-02$	03	4.52E-03
2032_NA Descend B	29906.19	316636	1350:07	4.85E+	$4.69 \mathrm{E}+$	5.39	5.34	$5.38 \mathrm{E}+01$	2.16	1.27	6.00	1.2	5.74E-01	9.4	$3.70 \mathrm{E}+04$	$3.50 \mathrm{E}+01$	3.24E+00	3.24E+00
2032_NA Descend B	26030.79	1782323	57:14.9	$3.70 \mathrm{E}+02$	$3.91 \mathrm{E}+01$	$4.50 \mathrm{E}+01$	$4.46 \mathrm{E}+01$	$4.49 \mathrm{E}+01$	$1.96 \mathrm{E}+02$	$1.17 \mathrm{E}+06$	5.53E+22	$1.12 \mathrm{E}+00$	$4.58 \mathrm{E}-01$	8.21E+04	$3.22 \mathrm{E}+04$	$3.05 \mathrm{E}+01$	$2.87 \mathrm{E}+00$.87
2032_NA_ Descend B	13149.85	340742.3	:06.5	$2.50 \mathrm{E}+02$	$3.04 \mathrm{E}+01$	$3.50 \mathrm{E}+01$	$3.48 \mathrm{E}+01$	$3.50 \mathrm{E}+01$	8.47E+01	4.69E+05	$2.39 \mathrm{E}+22$	5.67E-01	$2.59 \mathrm{E}-01$	4.15E+04	$1.63 \mathrm{E}+04$	$1.54 \mathrm{E}+01$	$1.34 \mathrm{E}+00$	1.34E+00
2032_NA_ Descend G	2	657	01:56.4	2.	$2.89 \mathrm{E}+01$	3.34E+01	3.32	3.34E+01	5.31 E	3.35	$1.79 \mathrm{E}+2$	4.28E-01	$1.84 \mathrm{E}-01$	$3.13 \mathrm{E}+04$	$1.23 \mathrm{E}+04$	$1.16 \mathrm{E}+01$	$9.81 \mathrm{E}-01$	9.81E-01
2032_NA Taxi In	8002.336	0	40:21.0	$2.09 \mathrm{E}+02$	$2.85 \mathrm{E}+01$	$3.28 \mathrm{E}+01$	$3.26 \mathrm{E}+01$	$3.28 \mathrm{E}+01$	3.21E+01	$2.32 \mathrm{E}+05$	$1.33 \mathrm{E}+22$	$3.46 \mathrm{E}-01$	$1.63 \mathrm{E}-01$	$2.52 \mathrm{E}+04$	9.90E+03	9.37E+00	7.64E-01	$7.64 \mathrm{E}-01$
2032_NA_ Full Flight	106252	556522	39869:00:	1.13E+03	$1.51 \mathrm{E}+02$	$1.73 \mathrm{E}+02$	$1.72 \mathrm{E}+02$	$1.73 \mathrm{E}+02$	1.66E+03	$6.78 \mathrm{E}+06$	$1.28 \mathrm{E}+2$	4.34E+00	2.17E+00	3.35E+05	$1.31 \mathrm{E}+3$	$1.24 \mathrm{E}+02$	1.40	. 40
2032_NA_ GSE LTO	0		14708:48	$1.71 \mathrm{E}+02$	0.00E+00	$7.28 \mathrm{E}+00$	6.73E+00	6.42E+00	$1.49 \mathrm{E}+$		N/A	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	$1.44 \mathrm{E}-01$	$9.66 \mathrm{E}-01$. 04
2032_NA_APU	0		22878:4	2.77E+01	$1.62 \mathrm{E}+00$	$1.87 \mathrm{E}+00$	$1.86 \mathrm{E}+00$	$1.87 \mathrm{E}+00$	$3.88 \mathrm{E}+0$	N/A	N/A	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	5.06E+00	3.85E+00	. 85

peration Mode	Fuel (ST)	Distance (D Duration	CO (ST)	THC (ST)	TOG (ST)	Voc (ST)	NMHC (ST	NOX (ST)	nvPM Mas	nvPM Nun	MSO (ST)	MFO (ST)	02 (ST)	H2O (ST)	Sox (ST)	PM 2.5 (STP	PM 10 (ST)
AUS_2032 Startup	0	0 00:00.0	0.00E+00	3.50E+01	4.05E+01	4.03E+01	4.05E+01	0.00E+00	N/A	N/A	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00 \mathrm{E}+00$	$0.00 E+00$	0.00E+00
AUS_2032 Taxi Out	19801.11	0 19379:00:1	5.12E+02	6.78E+01	7.82E+01	7.77E+01	$7.82 \mathrm{E}+01$	7.95E+01	5.73E+05	3.29E+22	8.556-01	3.87E-01	$6.25 \mathrm{E}+04$	2.45 E+04	$2.32 \mathrm{E}+01$	$1.87 \mathrm{E}+00$	1.87E+0
AUS_2032 Climb Grol	29941.48	94946.33 20196:39:	5.21E+02	1.04E+02	$1.20 \mathrm{E}+02$	$1.19 \mathrm{E}+02$	$1.20 \mathrm{E}+02$	3.30E+02	1.42E+06	3.94E+22	$1.29 \mathrm{E}+00$	4.92E-01	9.45E+04	3.70E+04	3.51 +01	3.35E+00	3.355+00
AUS_2032 Climb Belc	C5484.31	234764.5 20912:58:	$5.36 \mathrm{E}+02$	1.05 E+02	$1.21 \mathrm{E}+02$	$1.20 E+02$	$1.21 \mathrm{E}+02$	4.63E+02	$1.91 \mathrm{t}+06$	$4.32 \mathrm{E}+22$	1.53E+00	5.60E-01	$1.12 \mathrm{E}+05$	4.39E+04	4.16 E+01	$4.20 E+00$	4.20E+00
AUS_2032 Climb Belc	48963.89	673523.9 22687:14:!	5.70E+02	1.06 E+02	$1.23 \mathrm{E}+02$	$1.22 \mathrm{E}+02$	$1.22 \mathrm{E}+02$	$7.85 \mathrm{E}+02$	3.12E+06	5.27E+22	$2.11 \mathrm{E}+00$	6.99E-01	$1.54 \mathrm{E}+05$	6.06E+04	5.73E+01	6.26E+00	6.26E+00
AUS_2032 Climb Belc	84467.72	2586507 28282:54:'	6.89E+02	1.11 ++02	$1.28 \mathrm{E}+02$	$1.27 \mathrm{E}+02$	$1.28 \mathrm{E}+02$	1.61E+03	6.11F+06	7.56E+22	3.40E+00	1.74E+00	$2.67 \mathrm{E}+05$	1.04E+05	$9.89 \mathrm{E}+01$	$1.19 \mathrm{E}+01$	1.19E+01
23 Above 10 C	47.04548	8420.11 19:02.8	$1.16 \mathrm{E}+00$	6.89E-02	7.96E-02	7.92E-02	7.96E-02	3.55-01	$1.29 \mathrm{E}+03$	9.13E+16	1.69E-03	1.41E-03	$1.48 \mathrm{E}+02$	5.82E+01	5.51E-02	4.52E-03	4.52E-03
AUS_2032 Descend B	32940.74	3447014 11248:58:!	5.16E+02	4.94E+01	5.68E+01	5.63E+01	5.67E+01	2.39E+02	$1.40 \mathrm{E}+06$	$6.62 \mathrm{E}+22$	$1.39 \mathrm{E}+00$	6.09E-01	$1.04 E+05$	4.07E+04	3.86E+01	3.55E+00	3.55E+00
AUS_2032 Descend B	28680.28	1945111 48:59.9	3.95E+02	4.11E+01	4.73E+01	$4.69 \mathrm{E}+01$	4.71E+01	2.17E+02	$1.29 \mathrm{E}+06$	6.10E+22	1.24E+00	4.81--01	$9.05 \mathrm{E}+04$	3.55E+04	3.36E+01	3.14E+00	3.14E+00
AUS_2032 Descend B	14388.57	365547.7 15:51.5	$2.67 \mathrm{E}+02$	3.18E+01	$3.66 \mathrm{E}+01$	$3.63 \mathrm{E}+01$	3.66E+01	9.33E+01	$5.15 \mathrm{E}+05$	2.62E+22	6.211-01	2.71E-01	4.54E+04	$1.78 \mathrm{E}+04$	1.69E+01	$1.46 \mathrm{E}+00$	$1.46 \mathrm{E}+00$
AUS_2032 Descend G	10814.69	72436.55 53:41.4	2.31E+02	3.03E+01	3.49E+01	$3.47 \mathrm{E}+01$	3.49E+01	5.83E+01	3.67E+05	$1.95 \mathrm{E}+22$	4.67--01	1.93E-01	3.41E+04	$1.34 \mathrm{E}+04$	1.27 +01	$1.06 E+00$	1.06E+00
AUS_2032 Taxi In	8694.676	32:06.0	2.24E+02	$2.98 \mathrm{E}+01$	3.43E+01	$3.41 \mathrm{E}+01$	3.43E+01	3.49E+01	$2.52 \mathrm{+}+05$	$1.44 \mathrm{E}+22$	3.76E-01	1.70E-01	$2.74 E+04$	$1.08 \mathrm{E}+04$	1.02E+01	8.23E-01	8.23E-01
AUS_2032 Full Flight	117455.5	6041941 39572:12:	1.21 ++03	1.61 ++02	$1.85 \mathrm{E}+02$	1.83E+02	$1.85 \mathrm{E}+02$	$1.85 \mathrm{E}+03$	7.51F+06	$1.42 \mathrm{E}+23$	4.79E+00	$2.35 \mathrm{E}+00$	3.71E+05	1.45 E+05	$1.38 \mathrm{E}+02$	$1.54 \mathrm{E}+01$	1.54E+01
AUS 2032 GSE LTO	0	0 214708:48	$1.90 \mathrm{E}+02$	0.00E+00	8.06E+00	7.46E+00	7.11E+00	1.65E+01		N/A	$0.00 E+00$	0.00E+00	0.00E+00	0.00E+00	1.60E-01	$1.07 \mathrm{E}+00$	$1.15 \mathrm{E}+00$
AUS_2032 APU	0	0 22878:42:1	OOE+01	1.80E+00	$2.08 \mathrm{E}+00$	$2.06 E+00$	2.08E+00	4.32E+01		N/A	$0.00 \mathrm{E}+00$	0.00E+00	0.00E+00	0.00E+00	5.61E+00	4.27E+00	4.27E+00
	77644.17	2618635	1184.35	149.008	179.9342	178.0873	178.7184	1062.186			3.3527	1.17975	244966	96045	96.70424	14.7418	14.8223
				co	voc	Nox	PM2.5	PM10	CO2	502							
			Action	1184.35	178.0873	1062.186	14.7418	14.8223	244966	96.70424							
			No Action	1097.712	166.601	956.318	13.36351	13.4362	221917	87.58144							
			Net Chang	86.638	11.4863	105.868	1.37829	1.3861	23049	9.1228							

Assumption:

- boiler is operating 100% percent of the time at 100% of it's capacity, since calculating for PTE not actual operations
Notes: AP-42,
- Tables 1.4-1 an
- Tables 1.4-1 and 1.4-2, Controlled - Low NOx burners
noted tables, July 1998
heating value of natural gas $=1020 \mathrm{BTU} / \mathrm{scf}$
DOA Air Emissions
From Boilers and Water Heaters

SO_{2}			co			PM (total)			тос			co2			Methane	
EF	EMISSION RATE		EF	EMISSION RATE		EF	EMISSION RATE		EF	EmISSION RATE		EF	EmISSION RATE		EF	EMIS
($1 \mathrm{l} / 10^{6} \mathrm{scf}$)	($\mathrm{b} / \mathrm{r} \mathrm{r}$)	(ton/yr)	$\left(\mathrm{lb} / 10^{6} \mathrm{sff}\right)$	(li/rr)	(ton/yr)	$\left(\mathrm{lb} / 10^{6} \mathrm{sff}\right)$	($\mathrm{lb} / \mathrm{Pr}$)	(ton/yr)	$\left(\mathrm{lb} / 10^{6}\right.$ sff)	(lb/re)	(ton/yr)	(lb/10 ${ }^{6} \mathrm{scf}$	(lb/rr)	(metric ton/rr)	$\left(\mathrm{lb} / 10^{6} \mathrm{scf}\right)$	(11//r)
0.6	5.8632	0.0029	84	820.8480	0.4104	7.6	74.2672	0.0371	11	107.4920	0.0537	120000	1172640.0000	586.3200	2.3	22.4756
0.6	5.8632	0.0029	84	820.8480	0.4104	7.6	74.2672	0.0371	11	107.4920	0.0537	120000	1172640.0000	586.3200	2.3	22.4756
		0.0059			0.8208			0.0743			0.1075			1063.8014		

DOA Air Emissions
From Boilers and Water Heaters

AUS Ground Access Vehicles

MOVES3 2032 Emissions TPY								
CO	NOx	PM10	PM2.5	VOC	SO2	CH4	N2O	CO2
3.415402	0.01883	0.001948	0.001792	0.014675	0.002335	0.00774	0.00171	351.4903
3.791836	0.020906	0.002163	0.00199	0.016292	0.002592	0.008593	0.001899	390.2304
0.962267	0.003386	0.000814	0.00072	0.004074	0.001147	0.00213	0.001726	173.3392
8.169506	$\mathbf{0 . 0 4 3 1 2 2}$	$\mathbf{0 . 0 0 4 9 2 4}$	$\mathbf{0 . 0 0 4 5 0 2}$	$\mathbf{0 . 0 3 5 0 4 1}$	$\mathbf{0 . 0 0 6 0 7 4}$	$\mathbf{0 . 0 1 8 4 6 3}$	$\mathbf{0 . 0 0 5 3 3 5}$	$\mathbf{9 1 5 . 0 6}$

THIS PAGE INTENTIONALLY LEFT BLANK

[^0]: ${ }^{1}$ The 2037 modeling year is for informational purposes only.

[^1]: ${ }^{2}$ Released March 29, 2021, https://aedt.faa.gov/3d information.aspx
 ${ }^{3}$ Published September 12, 2016
 ${ }^{4}$ Nighttime is defined as 10 pm to 7 am in DNL

[^2]: ${ }^{5}$ https://aspm.faa.gov/opsnet/sys/airport.asp

[^3]: ${ }^{6}$ According to a statistical normal (Gaussian) distribution

[^4]: ${ }^{7}$ Data downloaded from https://viewer.nationalmap.gov/basic/?howTo=true in $1 / 3$ Arc second GeoTIFF format.

[^5]: ${ }^{8}$ Population estimates are based on 2020 U. S. census data.

[^6]: ${ }^{9}$ https://www3.epa.gov/airquality/greenbook/anayo tx.html
 ${ }^{10}$ https://www.faa.gov/sites/faa.gov/files/about/office org/headquarters offices/apl/1-air-quality.pdf
 ${ }^{11}$ emissions below the de minimis levels are considered not significant

[^7]: ${ }^{12}$ Revisions to the General Conformity Rule are codified under 40 CFR Parts 51 and 93, Subpart W, Revisions to the General Conformity Regulations, Final Rule (April 2010).
 ${ }^{13} 40$ CFR Part 93, Subpart A
 ${ }^{14}$ Austin is located in an EPA designated attainment area for all pollutants

[^8]: ${ }^{15}$ ACRP, 2014 https://crp.trb.org/acrp0267/acrp-report-102-guidance-for-estimating-airport-construction-emissions/

[^9]: ${ }^{16}$ Exhaust and Crankcase Emission Factors for Nonroad Compression-Ignition Engines in MOVES2014b (PDF) (177 pp, 15.4 MB, EPA-420-R-18-009, July 2018)
 ${ }^{17}$ Construction emissions used in MOVES3 assumed a blend of Tier 1, Tier 2, Tier 3, and Tier 4 for Davidson County based on EPA phasing ratios of older equipment in future years and does not reflect the primary use of either Tier 1 thru 4 engines. MOVES emission factors are specific to Travis County as generated within MOVES for each year.

[^10]: ${ }^{18}$ Global warming potentials are based on the latest Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report (AR5), November 2014.

[^11]: ${ }^{19}$ emissions below the de minimis levels are considered not significant and have minimal emissions increase

[^12]: ${ }^{20}$ Austin-Round Rock: Latest Ozone Planning Activities - Texas Commission on Environmental Quality - www.tceq.texas.gov
 ${ }^{21}$ Austin-Round Rock and the State Implementation Plan - Texas Commission on Environmental Quality www.tceq.texas.gov

[^13]: ${ }^{22}$ As explained by the EPA, "greenhouse gases, once emitted, become well mixed in the atmosphere, meaning U.S. emissions can affect not only the U.S. population and environment but other regions of the world as well; likewise, emissions in other countries can affect the United States." U.S. Environmental Protection Agency, Climate Change Division, Office of Atmospheric Programs, Technical Support Document for Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act 2-3, 2009, https://www.epa.gov/ghgemissions/technical-support-document-endangerment-and-cause-or-contribute-findings-greenhouse (accessed September 28, 2018).
 ${ }^{23}$ Intergovernmental Panel on Climate Change, Fifth Assessment Report, 2014, https://www.ipcc.ch/report/ar5/syr/ 9 (accessed September 28, 2018).
 ${ }^{24}$ U.S. Global Change Research Program, Global Climate Change Impacts in the United States, 2009,
 http://www.globalchange.gov/what-we-do/assessment/previous-assessments/global-climate-change-impacts-in-the-us2009 (accessed September 28, 2018).
 ${ }^{25}$ U.S. Environmental Protection Agency, Overview of Greenhouse Gases,
 http://www3.epa.gov/climatechange/ghgemissions/gases.html (accessed February 10, 2022).

[^14]: 2614 FAA, January 2005, Aviation and Emissions A Primer. What emissions come from aviation?
 27 https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/apl/3-climate.pdf
 28 Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis." January 20, 2021.

[^15]: ${ }^{29}$ https://www.ipcc.ch/assessment-report/ar5/
 ${ }^{30}$ 1050.1F Desk Reference,
 https://www.faa.gov/about/office org/headquarters offices/apl/environ policy guidance/policy/faa nepa order/desk re f/media/3-climate.pdf

[^16]: ${ }^{31}$ The reference pressure is approximately the quietest sound that a healthy young adult can hear.

[^17]: ${ }^{32}$ The logarithmic ratio used in its calculation means that SPL changes relatively quickly at low sound pressures and more slowly at high pressures. This relationship matches human detection of changes in pressure. We are much more sensitive to changes in level when the SPL is low (for example, hearing a baby crying in a distant bedroom), than we are to changes in level when the SPL is high (for example, when listening to highly amplified music).
 ${ }^{33} \mathrm{~A}$ "10 dB per doubling" rule of thumb is the most often used approximation.

[^18]: 34 "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety," U. S. EPA Report No. 550/9-74-004, March 1974.

[^19]: 35 Federal Aviation Administration. Press Release - FAA To Re-Evaluate Method for Measuring Effects of Aircraft Noise. https://www.faa.gov/news/press_releases/news_story.cfm?newsld=18774
 ${ }^{36} \quad$ Federal Aviation Administration. Report to Congress on an evaluation of alternative noise metrics. https://www.faa.gov/about/plans_reports/congress/media/Day-Night_Average_Sound_Levels_COMPLETED_report_w_letters.pdf

[^20]: ${ }^{37}$ The awakening data presented in Figure A-9 apply only to individual noise events. The American National Standards Institute (ANSI) has published a standard that provides a method for estimating the number of people awakened at least once from a full night of noise events: ANSI/ASA S12.9-2008 / Part 6, "Quantities and Procedures for Description and Measurement of Environmental Sound - Part 6: Methods for Estimation of Awakenings Associated with Outdoor Noise Events Heard in Homes." This method can use the information on single events computed by a program such as the FAA's AEDT, to compute awakenings.

[^21]: ${ }^{38}$ Ingard, Uno. "A Review of the Influence of Meteorological Conditions on Sound Propagation," Journal of the Acoustical Society of America, Vol. 25, No. 3, May 1953, p. 407.
 ${ }^{39}$ In dry air, the approximate velocity of sound can be obtained from the relationship:
 $\mathrm{c}=331+0.6 \mathrm{~T}_{\mathrm{c}}$ (c in meters per second, T_{c} in degrees Celsius). Pierce, Allan D., Acoustics: An Introduction to its Physical Principles and Applications. McGraw-Hill. 1981. p. 29.
 ${ }^{40}$ Embleton, T.F.W., G.J. Thiessen, and J.E. Piercy, "Propagation in an inversion and reflections at the ground," Journal of the Acoustical Society of America, Vol. 59, No. 2, February 1976, p. 278.

[^22]: ${ }^{41}$ Ingard, p. 407.
 ${ }^{42}$ Dickinson, P.J., "Temperature Inversion Effects on Aircraft Noise Propagation," (Letters to the Editor) Journal of Sound and Vibration. Vol. 47, No. 3, 1976, p. 442.
 ${ }^{43}$ Piercy and Embleton, p. 1412. Note, in addition, that as a result of the scalar nature of temperature and the vector nature of wind, the following is true: under lapse conditions, the refractive effects of wind and temperature add in the upwind direction and cancel each other in the downwind direction. Under inversion conditions, the opposite is true.
 ${ }^{44}$ Piercy and Embleton, p. 1413.
 ${ }^{45}$ Ingard, pp. 409-410.

[^23]: ${ }^{46}$ International Organization for Standardization, Acoustics - Attenuation of sound during propagation outdoors - Part 2: General Method of calculation, International Standard ISO9613-2, Geneva, Switzerland (15 December 1996).

[^24]: Fugitive Sources
 Units for Non-Greenhouse Gases Emission: Short Ton

[^25]: Non-Road Sources
 Units for Non-Green
 Units for Greenhous

[^26]: v 600
 600

[^27]: v 600
 600

