

Meeting Objective

Discuss & evaluate different stream buffer configurations and judge which best achieve watershed protection and development opportunity goals.

Meeting Agenda

- 1. Introductions (5 min.)
- 2. Buffer Presentation by Staff (40 min.) a) Defining a Stream Buffer: Considerations
 - b) Suburban Waters hed Buffer Scenarios
 - > Gilleland Creek Case Study
 - > Sun Chase Case Study
 - c) "Manning's n" Flood plain Character Analysis
- 3. Small Group Discussion (55 min.)
- 4. Full Group Review (20 min.)

Defining a Buffer

- How do we currently define protective buffers for our creeks?
 - Width by Drainage Area Threshold
 - Width Measured from Centerline
- Adjustments for future?
 - Buffer A veraging (Dec. 2)

Buffer Regulations: What We Want

1. Simple

- Easy to define, review
- Protect multiple functions with single geometry
- Fewer, not more, different buffer systems

2. Predictable

- Easy to estim ate developable land for project
 Well-defined criteria for adjustments (instead of variance)
- 3. Flexible
 - Allows for limited a veraging, modification without jeopardizing function

Buffer Functions: What We Want

1. Water Quality Protection

- Buffer width (minimum)
 - Buffer extent (drainage a reathreshold)

2. Erosion Protection

• Erosion Hazard Zone

3. Floodplain Functionality

- Flood plain boundary
- Modification limitations
- Manning's n coefficient

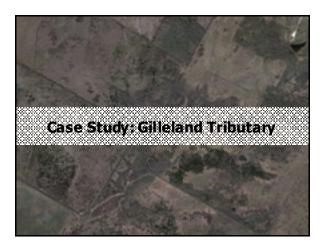
Potential Buffer Scenarios

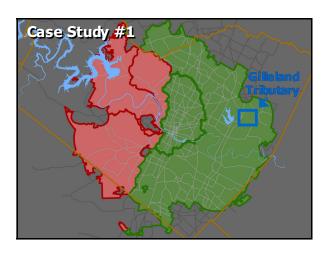
1. Existing Suburban Watershed Buffers

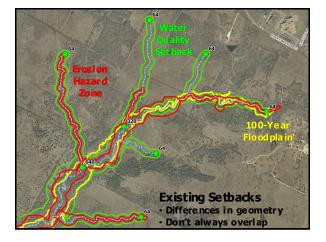
- Two-tiered system (CWQZ/WQTZ)
- 320 ac. Minor/640 ac. Intermediate/1280 ac. Major
- 50 100/100 200/200 400 feet from centerline (based on 100-Year Fully-Developed Floodplain)

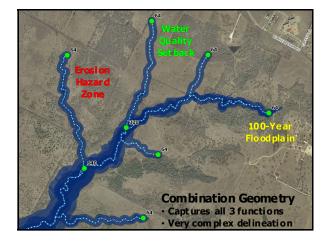
2. Western Buffers

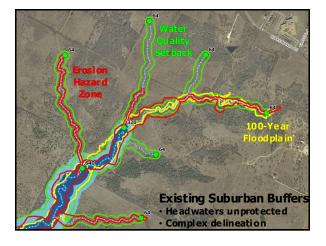
- Water Supply Rural/Some BSZ watersheds
- Two-tiered system (CWQZ/WQTZ)
- 64 ac. Minor/320 ac. Intermediate/640 ac. Major
- 50 100/ 100 200/200 400 feet from centerline (based on 100-Year Fully-Developed Floodplain)

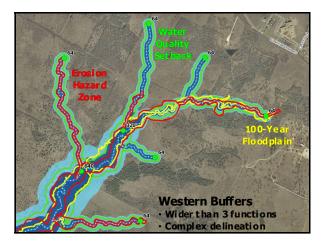

Potential Buffer Scenarios (Cont'd)

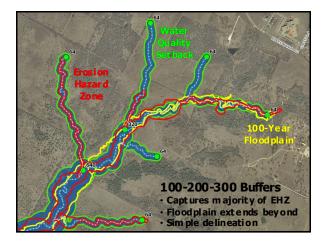

3. 100-200-300 Buffers

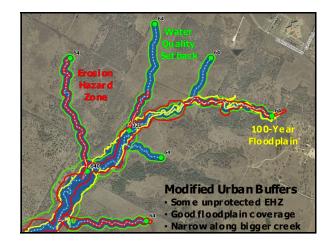

- Single-tiered system (CWQZ only) •
- 64 ac. Minor/320 ac. Intermediate/640 ac. Major
- 100 feet/200 feet/300 feet from centerline

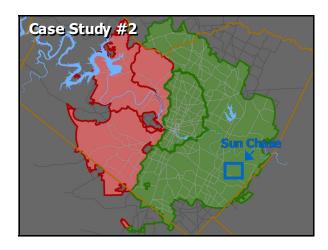

4. Modified Urban Watershed Buffers

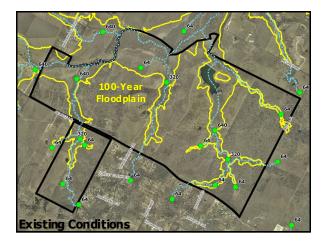

- Single-tiered system (CWQZ only)
- 64 ac. threshold no Minor/Intermediate/Major 100 - 400 feet from centerline (based on 100-Year Fully-Developed Floodplain)*
- * Urban Watershed Buffers are currently 50 400 ft. in width and are based on the FEMA floodplain

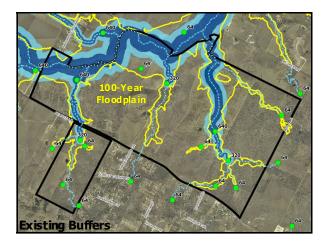


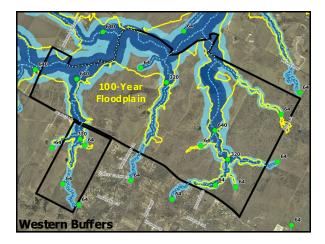


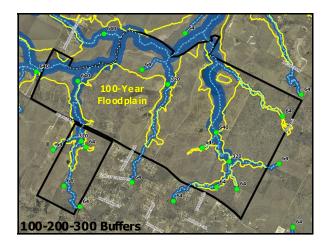


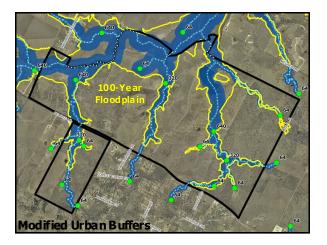


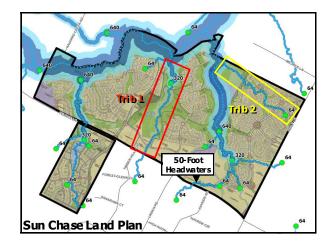


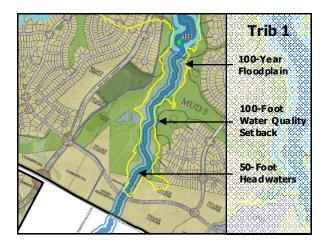


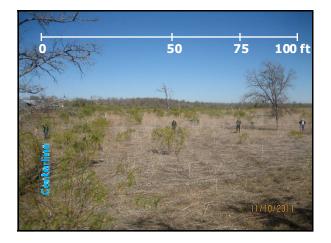


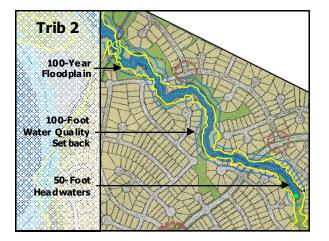


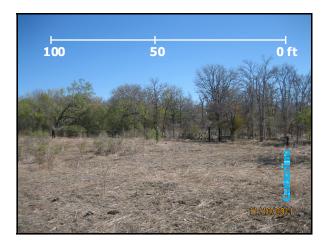


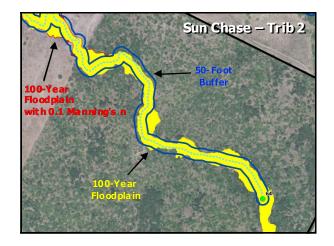


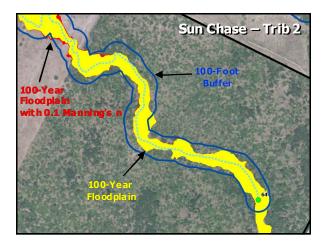


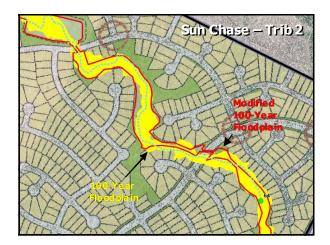


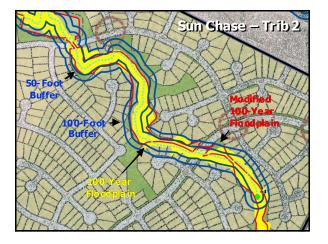












Manning's n Analysis: Results

- Manning's n analysis results – Multiple scenarios evaluated in
 - Suburban Watersheds
 - Relatively modest changes in Flood plain A rea (0 to 10%) using assumption for mature riparian forest
 - Options available to reduce impacts further using flexible buffer delineation & other potential tools

Manning's n Analysis: Results

	Average Percent Change in Flood plain Area							
	DA = 64-320		DA = 320-640		DA = 640-1280		DA = 1280+	
Case Study	50 ft Buffer	100 ft Buffer	100 ft Buffer	200 ft Buffer	150 ft Buffer	300 ft Buffer	150 ft Buffer /FP	300 ft Buffer /FP
Sun Chase T2	1%	3%						
Sun Chase T1	0%	10%	1%	4%				
Dry East T10	4%	4%	5%	2%				
Gilleland T1	-2%	3%	1%	3%	2%	3%		
Dry East	3%	5%	3%	5%	6%	5%	2%	2%

Manning's n Analysis: Results

	Average Percent Change in Top Width							
	DA = 64-320		DA = 320-640		DA = 640-1280		DA = 1280+	
Case Study	100 ft Buffer	50 ft Buffer	200 ft Buffer	100 ft Buffer	300 ft Buffer	150 ft Buffer	300 ft Buffer /FP	150 ft Buffer /FP
Sun Chase T2	3%	1%						
Sun Chase T1	5%	2%	6%	2%				
Dry East T10	3%	3%	2%	9%				
Gilleland T1	1%	0%	-1%	-1%	6%	4%		
Dry East	7%	4%	8%	4%	7%	4%	2%	2%

Manning's n Analysis: Results

			nt of Cro Complete				
		DA = 6	4-320	DA = 3	20-640	DA = 64	0-1280
Case Study	Total# Cross- Sections	100 ft Buffer	50 ft Buffer	200 ft Buffer	100 ft Buffer	300 ft Buffer	150 ft Buffer
Sun Chase T2	18	67%	11%				
Sun Chase T1	18	28%	0%	75%	0%		
Dry East T10	9	22%	0%	22%	0%		
Gilleland T1	19	95%	37%	67%	0%	70%	5%
Dry East	18	72%	6%	70%	0%	6%	0%

Manning's n Analysis: Q&A

- Stakeholder Feedback
 - Do you think the evaluated creeks are representative?
 - Are there cases where the flood plain will be significantly expanded?
 - Other observations?

Breakout Session

Buffer Scenarios

- Existing Suburban Watershed Buffers
- Wester n B uffers
- 100-200-300 B uffers
- Modified Urban Buffers
- 1. Which buffer systems do you like? Why?
- 2. Which buffer systems do you not like? Why?
- 3. What are other ways to define the buffer?
- 4. What other information should we consider?

Adoption Schedule

Stakeholder Meetings	Sep 2011 – April 2012 (Meetings approx. every two weeks)
 Creek Protect ion : Floo dpl ain Protect ion : 	Sep 9, 23, Oct 7 Oct 21, Nov 18, Dec 2
3. Development Patterns & Greenways	: Dec 16, Jan 2012
 Improved Storm water Controls: 	Jan
Simplify & Clarify Regs/Maintain Opp	ortunity: Feb
6. Mitigation Options (Desired Develop	ment Zone): Mar
7. Draft Ordina nce:	Apr
Boards & Commissions	May – June 2012
City Council	August 2012
Travis County Commissioner's Cou	rt Fall 2012

Contact Information

Matt Hollon Watershed Protection Department City of Austin (512) 974-2212 matt.hollon@austintexas.gov

www.austintexas.gov/watershed/ ordinances2.htm

The Big Picture

- Citywide summaries
 - % Floodplain of land
 - % Flood plain of undeveloped land
 - % Creek length by Drainage Area
 - % Creek buffers of land
 - Etc.