

Watershed Protection Ordinance (WPO) Stakeholder Meeting

CREEK & FLOODPLAIN PROTECTION: BUFFER SCENARIOS

November 18, 2011

Meeting Objective

Discuss & evaluate different stream buffer configurations and judge which best achieve watershed protection and development opportunity goals.

Meeting Agenda

- 1. Introductions (5 min.)
- 2. Buffer Presentation by Staff (40 min.)
 - a) Defining a Stream Buffer: Considerations
 - b) Suburban Watershed Buffer Scenarios
 - Gilleland Creek Case Study
 - Sun Chase Case Study
 - c) "Manning's n" Floodplain Character Analysis
- 3. Small Group Discussion (55 min.)
- 4. Full Group Review (20 min.)

Defining a Buffer

- How do we currently define protective buffers for our creeks?
 - Width by Drainage Area Threshold
 - Width Measured from Centerline
- Adjustments for future?
 - Buffer Averaging (Dec. 2)

Buffer Regulations: What We Want

1. Simple

- Easy to define, review
- Protect multiple functions with single geometry
- Fewer, not more, different buffer systems

2. Predictable

- Easy to estimate developable land for project
- Well-defined criteria for adjustments (instead of variance)

3. Flexible

Allows for limited averaging, modification without jeopardizing function

Buffer Functions: What We Want

1. Water Quality Protection

- Buffer width (minimum)
- Buffer extent (drainage area threshold)

2. Erosion Protection

Erosion Hazard Zone

3. Floodplain Functionality

- Floodplain boundary
- Modification limitations
- Manning's n coefficient

Potential Buffer Scenarios

1. Existing Suburban Watershed Buffers

- Two-tiered system (CWQZ/WQTZ)
- 320 ac. Minor/640 ac. Intermediate/1280 ac. Major
- 50 100/100 200/200 400 feet from centerline (based on 100-Year Fully-Developed Floodplain)

2. Western Buffers

- Water Supply Rural/Some BSZ watersheds
- Two-tiered system (CWQZ/WQTZ)
- 64 ac. Minor/320 ac. Intermediate/640 ac. Major
- 50 100/ 100 200/200 400 feet from centerline (based on 100-Year Fully-Developed Floodplain)

Potential Buffer Scenarios (Cont'd)

3. 100-200-300 Buffers

- Single-tiered system (CWQZ only)
- 64 ac. Minor/320 ac. Intermediate/640 ac. Major
- 100 feet/200 feet/300 feet from centerline

4. Modified Urban Watershed Buffers

- Single-tiered system (CWQZ only)
- 64 ac. threshold no Minor/Intermediate/Major
- 100 400 feet from centerline (based on 100-Year Fully-Developed Floodplain)*

^{*} Urban Watershed Buffers are currently 50 - 400 ft. in width and are based on the FEMA floodplain

Case Study: Sun Chase Tributaries

Manning's n Analysis

- Manning's n analysis results
 - Multiple scenarios evaluated in Suburban Watersheds
 - Relatively modest changes in Floodplain Area (0 to 10%) using assumption for mature riparian forest
 - Options available to reduce impacts further using flexible buffer delineation & other potential tools

	Average Percent Change in Floodplain Area							
	DA = 64-320		DA = 320-640		DA = 640-1280		DA = 1280+	
Case Study	50 ft Buffer	100 ft Buffer	100 ft Buffer	200 ft Buffer	150 ft Buffer	300 ft Buffer	150 ft Buffer /FP	300 ft Buffer /FP
Sun Chase T2	1%	3%						
Sun Chase T1	0%	10%	1%	4%				
Dry East T10	4%	4%	5%	2%				
Gilleland T1	-2%	3%	1%	3%	2%	3%		
Dry East	3%	5%	3%	5%	6%	5%	2%	2%

	Average Percent Change in Top Width								
	DA = 6	DA = 64-320		DA = 320-640		DA = 640-1280		DA = 1280+	
Case Study	100 ft Buffer	50 ft Buffer	200 ft Buffer	100 ft Buffer	300 ft Buffer	150 ft Buffer	300 ft Buffer /FP	150 ft Buffer /FP	
Sun Chase T2	3%	1%							
Sun Chase T1	5%	2%	6%	2%					
Dry East T10	3%	3%	2%	9%					
Gilleland T1	1%	0%	-1%	-1%	6%	4%			
Dry East	7%	4%	8%	4%	7%	4%	2%	2%	

		Percent of Cross-Sections where Top Width is Completely Contained within Buffer					
		DA = 64-320		DA = 320-640		DA = 640-1280	
Case Study	Total # Cross- Sections	100 ft Buffer	50 ft Buffer	200 ft Buffer	100 ft Buffer	300 ft Buffer	150 ft Buffer
Sun Chase T2	18	67%	11%				
Sun Chase T1	18	28%	0%	75%	0%		
Dry East T10	9	22%	0%	22%	0%		
Gilleland T1	19	95%	37%	67%	0%	70%	5%
Dry East	18	72%	6%	70%	0%	6%	0%

Manning's n Analysis: Q&A

- Stakeholder Feedback
 - Do you think the evaluated creeks are representative?
 - Are there cases where the floodplain will be significantly expanded?
 - Other observations?

Breakout Session

Buffer Scenarios

- Existing Suburban Watershed Buffers
- Western Buffers
- 100-200-300 Buffers
- Modified Urban Buffers
- 1. Which buffer systems do you like? Why?
- 2. Which buffer systems do you not like? Why?
- 3. What are other ways to define the buffer?
- 4. What other information should we consider?

Adoption Schedule

Stakeholder Meetings	Sep 2011 ·	– April	201
----------------------	------------	---------	-----

(Meetings approx. every two weeks)

1. Creek Protection: Sep 9, 23, Oct 7

2. Floodplain Protection: Oct 21, Nov 18, Dec 2

3. Development Patterns & Greenways: Dec 16, Jan 2012

4. Improved Stormwater Controls: Jan

5. Simplify & Clarify Regs/Maintain Opportunity: Feb

6. Mitigation Options (Desired Development Zone): Mar

7. Draft Ordinance: Apr

Boards & Commissions

May - June 2012

City Council August 2012

Travis County Commissioner's Court

Fall 2012

Contact Information

Matt Hollon Watershed Protection Department City of Austin (512) 974-2212

matt.hollon@austintexas.gov

<u>www.austintexas.gov/watershed/</u> <u>ordinances2.htm</u>

The Big Picture

- Citywide summaries
 - % Floodplain of land
 - % Floodplain of undeveloped land
 - % Creek length by Drainage Area
 - % Creek buffers of land
 - Etc.