

Meeting Objective

Identify existing challenges and potential improvements in Austin's code & criteria for structural flood & water quality controls.*

* Commonly known as stormwater "ponds." But not all have a pond form.

Meeting Agenda

- Introductions [5 min.]
- Staff Presentation [40 min.]
 - Structural Control History/Background
 - Lessons Learned/Potential Topics of Discussion
- Small-Group Breakout Sessions [60 min.]
 - Potential opportunities & challenges
- Full Group Wrap-Up [15 min.]
 - Summary of opportunities & challenges

Topics of Discussion

1. Today's Meeting

General feedback: current code & criteria

- 2. February 17 Meeting
 - Targeted Staff & Stakeholder topics:
 e.g., maintenance & regulatory challenges
- 3. March 2 Meeting
 - Green Infrastructure

What are structural controls?

Devices designed to temporarily store or treat stormwater runoff in order to mitigate flooding, erosion, and/or pollution by:

- Detention
- Filtration
- Retention
- Infiltration

Watershed Protection Strategies for Land Development

1. Site Selection

[Where in Austin]

- Watershed classifications
- > Drinking Water Protection vs. Desired Development Zones
- 2. Development Intensity [How Much on Site]
 - Impervious Cover Limits; Zoning; Utility Service Extensions
- **3. Development Placement** [Where on Site]
 - Stream & CEF Setbacks*; Steep Slope Limits; Cut & Fill Limits; Tree Protections; Floodplain Rules
- 4. Hydrologic & Hydraulic Rate/Volume [Runoff]
 - Structural Flood & Water Quality Controls

* CEF = Critical Environmental Feature (e.g., springs, wetlands, karst recharge features)

Development Impacts

- Addition of impervious cover (IC), compaction of soils, & greater drainage efficiency results in:
 - Increase in runoff rates
 - Increase in runoff volumes
 - Increase in frequency of runoff events
 - Increase in pollutant exports
 - Decrease in baseflow volumes & aquifer recharge

Impervious Cover and Runoff Avg. Annual Conversion of Total Rainfall to Runoff

Imperv. Cover Pct.	Avg. Annual Runoff	Ratio to Undeveloped (5% IC)	Typical Land Use
5%	4%	1.0	Open/Preserve
20%	14%	3.3	Low-Density SFR
40%	29%	7.1	Single-Family Res.
60%	48%	11.4	Multifamily Res.
80%	69%	16.4	Commercial/Office

Source: Derived from Barrett et al., CRWR, 1998. | SFR = Single-Family Residential

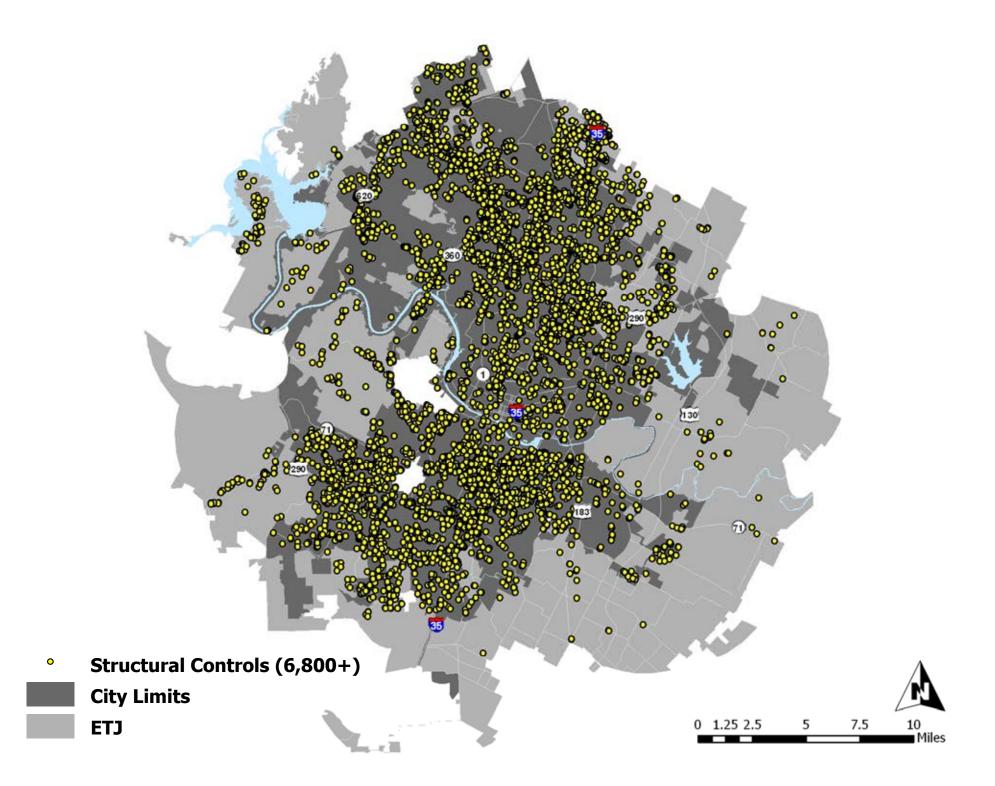
Evolution of Structural Controls

- No controls/Wild West
- Focus on flooding
- Focus on sediment in water
- Focus on additional pollutants
 - > especially nutrients & toxics
- Focus on runoff volume
- Focus on stream channel stability
- Focus on mimicking hydrologic cycle

Major Structural Stormwater Control Milestones

- Flood Detention & Criteria (1974, 1977)
- Early WQ Controls (1980)
- Comprehensive Watershed Ordinance (1986)
- Environmental Criteria Manual (1988)
- Non-Degradation Controls (1991)
- Half-Inch-Plus WQ Control Sizing (1993)
- Innovative Water Quality Controls (2007)

Types of Structural Controls


 Flood Detention 	54%
 Sedim./Sand Filtration 	38%
 Retention/Irrigation 	3%
Wet Ponds	3%
 Vegetative Filter Strips 	1%
New Innovative Controls	<1%

Pond Database project: over 6,800 Controls

Types of Structural Controls

•	Flood Detention	3,714
•	Sedim./Sand Filtration	2,575
•	Retention/Irrigation	209
•	Wet Ponds	184
•	Vegetative Filter Strips	94
•	New Innovative Controls	57

Pond Database project: 6,800+ Controls

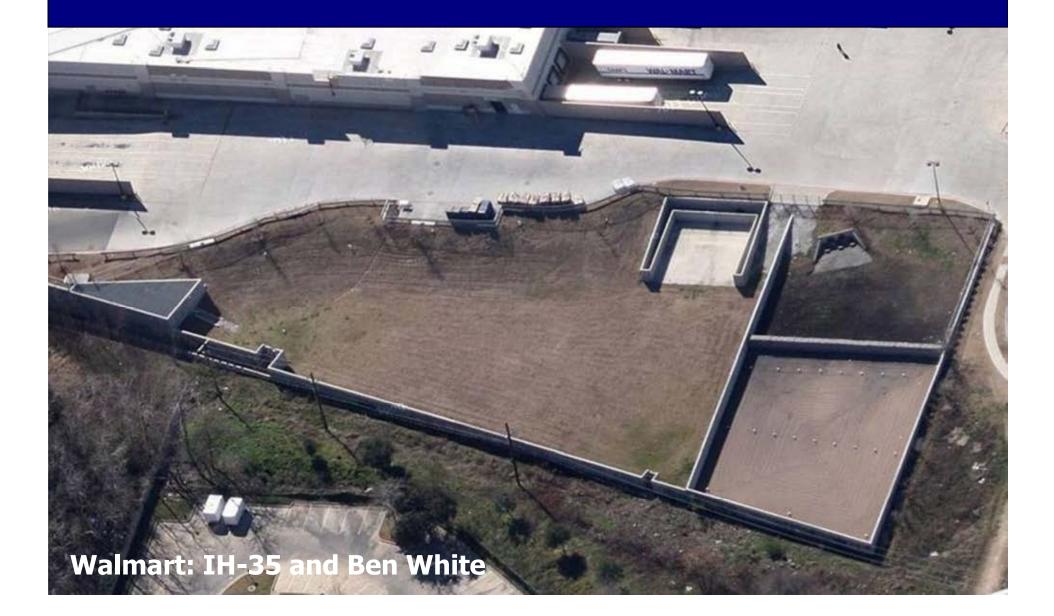
COA Requirements for Stormwater Controls

- Flood Detention
 - Maintain post-development peak rates of discharge at existing pre-development peak rates for 2, 10, 25, and 100-year storm events
 - Design in accordance with Drainage Criteria Manual
- Water Quality
 - Capture, isolate, and treat half-inch-plus volume (or SOS volume in Barton Springs Zone)
 - Treatment level of sedimentation/filtration (or nondegradation in Barton Springs Zone)
 - Design in accordance with Environ. Criteria Manual

Pond Inspection & Maintenance

 Single-family residential ponds accepted for maintenance by the City of Austin (~840)

Inspected at least annually by COA


 Commercial and multifamily ponds are maintained by the owner (~6,000)

Inspected at least every 3 years by COA

Flood Detention

- Control flows from very large storms
- Standard criteria focus on rate, not volume
- Usually not designed for water quality
 - > Can help with proper design
 - Wet ponds can "stack" detention on top of water quality storage
- Empty within 24 hours

Flood Detention

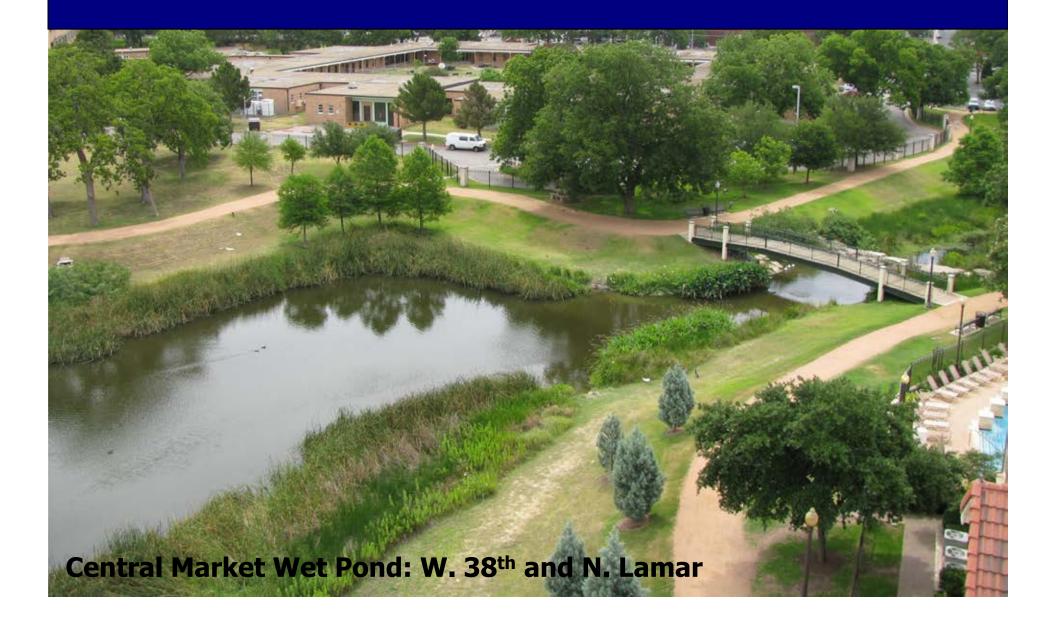
Sediment/Filtration Ponds

- Principal structural WQ control in Austin
- Excellent sediment control
- Modest dissolved pollutant control
- Straightforward maintenance
- Erosion control/channel stability benefit
- Usually not aesthetic, relegated to unseen corner of site

Sediment/Filtration Ponds

Retention-Irrigation Ponds

- SOS/Barton Springs Zone compliant
- Very high pollutant removal (including dissolved fraction)
- Needs minimum 12-inch soil depth
- Potential to integrate irrigation system into overall landscaping
- Mechanical system—moving parts: pumps, sprinkler heads, subject to failure
- Requires increased inspection


Retention-Irrigation Ponds

Wet Ponds

- Aesthetic amenity (if maintained)
- Serves large drainage areas (>20 acres)
- Makeup water/water conservation issues
- Liner problems (leaks, shrink/swell, karst)
- High maintenance costs
 - Difficult access (e.g., submerged trash)
 - Specialized work, complexity
 - High sediment removal costs
 - High vegetation management needs

Wet Ponds

Vegetative Filter Strips

- Passive, low maintenance, low irrigation system
- Flow spreader, grading, & slope critical
- Requires adequate soil quality & 6-inch depth (amend if necessary)
- IPM plan required
- Promotes groundwater recharge
- Currently reevaluating criteria

Vegetative Filter Strips

Innovative Controls

Approved in 2007 for WQ Credit:

- **1. Biofiltration**
- 2. Rain Gardens
- 3. Rainwater Harvesting
- 4. Porous Pavement

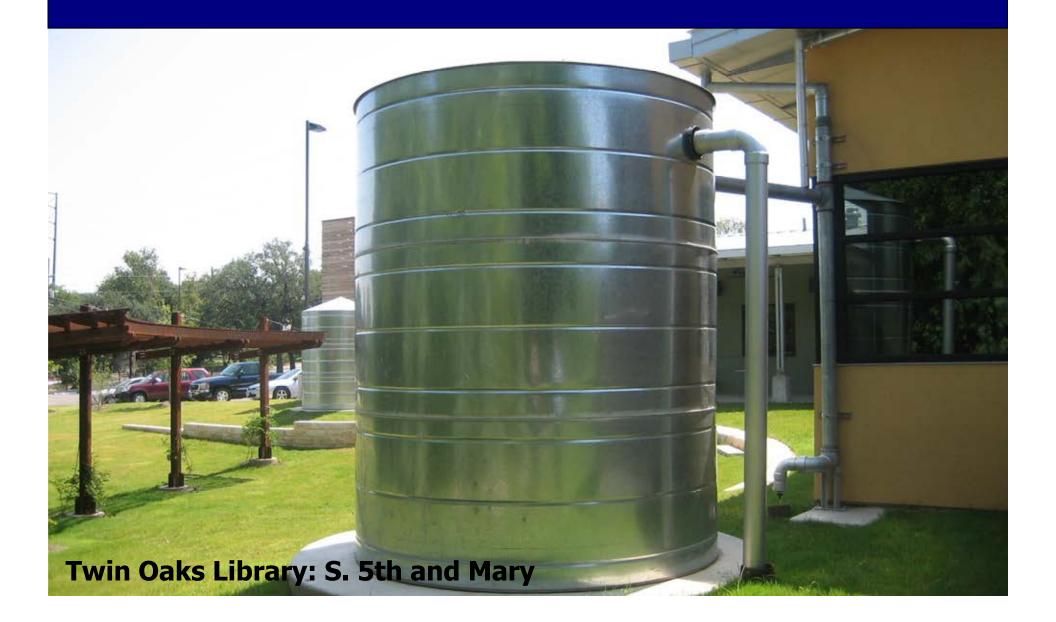
Biofiltration

- Plants provide key functional component
- Aesthetic amenity
- Can be integrated into landscaped areas
- Concentrates runoff onto vegetated area: requires less/no irrigation
- Requires 18-inch engineered soil
- Reduced clogging & maintenance
- Straightforward maintenance

Biofiltration

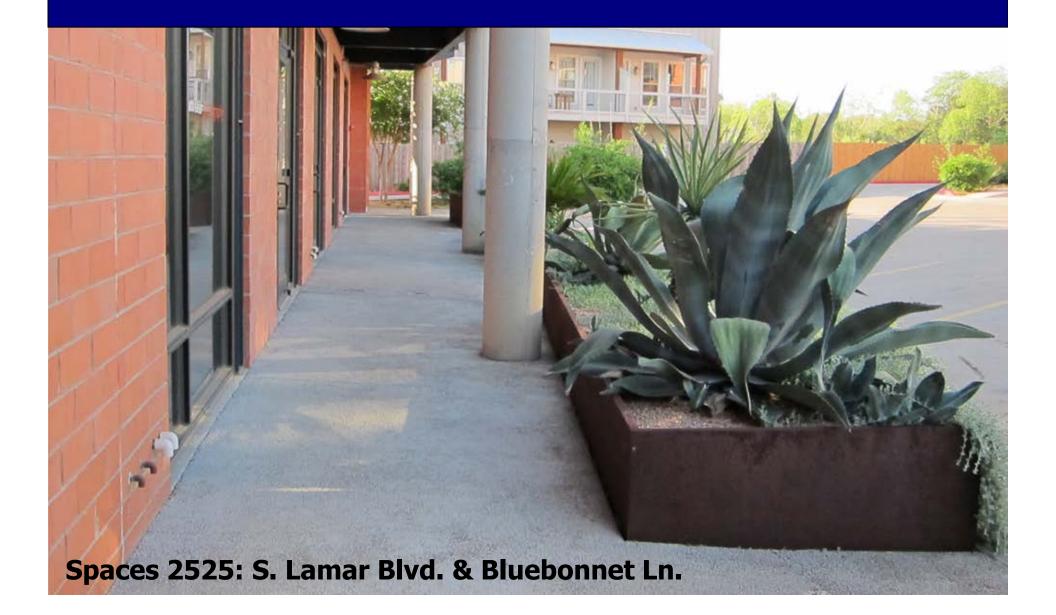
Rain Gardens

- Similar to Biofiltration Pond
- Flexible footprint & design options
- Max. drainage area = 1 acre
- Max. 12" ponding depth
- Commercial/multifamily applications only
- Filtration & infiltration components (no underdrain, soils permitting)


Rain Gardens

Rainwater Harvesting

- Stores water in tanks for irrigation
- Partial WQ credit possible
- 2 Design Options: retention-irrigation (pumps, valves, etc.) vs. vegetative filter strip (gravity)
- Max. 72-hour drawdown time (for WQ storage)
- May discharge to indoor or outdoor use
- May be upsized to provide water conservation function
- Requires active maintenance by owner


Rainwater Harvesting

Porous Pavement

- Pedestrian applications <u>only</u>
- Must meet design criteria:
 - Min. pavement thickness
 - Gravel/rock media specs
 - No off-site run-on to pavement.
- WQ credit since counts as pervious
- Cooler surface temperatures
- Better for plants, trees

Porous Pavement

Lessons Learned (1 of 3)

- 1. Nonstructural controls are essential to complement structural controls
- 2. Significant progress to date in developing & implementing structural controls
 - Need to continue to encourage innovation, creativity
- 3. Non-degradation controls are especially challenging & are not yet perfected
- 4. Potential for failure (due to poor design, lack of maintenance, etc.) is Achilles heel

Lessons Learned (2 of 3)

- 5. Site-specific factors (incl. operator ability) critical in selecting control type.
- 6. Proper maintenance is critical.
- 7. Integrate controls into site as positive, visible features (amenity, landscaping, water source, educational element).
 - Out-of-sight-out-of-mind is NOT a good strategy
 - Trying to replicate benefits of systems (soil, plant & animal communities) built over generations of time

Lessons Learned (3 of 3)

- 8. Design to include & benefit from natural systems (gravity, soils, plants).
- 9. Minimize complexity & active operation elements.
- 10. Sharing of best practice insights can advance the quality and usefulness of future controls.

Topics of Discussion

1. Today's Meeting

General feedback: current code & criteria

- 2. February 17 Meeting
 - Targeted Staff & Stakeholder topics:
 e.g., maintenance & regulatory challenges
- 3. March 2 Meeting
 - Green Infrastructure
 - Small-lot development

Breakout Groups

- What is/is not working currently with Austin's structural stormwater control requirements?
- Assume a blank slate: no existing code & criteria. What stormwater control strategy would you use to achieve watershed goals?
 - Erosion control
 - > Flood mitigation
 - > Water quality protection
 - > Sustainable maintenance

Adoption Schedule

Stakeholder Meetings	Sep 2011 – April 2012 (Meetings approx. every two weeks)		
 Creek Protection Floodplain Protection Development Patterns & Greenways Improved Stormwater Controls Mitigation Options (DDZ) + 	Sep 9, 23, Oct 7 Oct 21, Nov 18, Dec 2 Dec 16, Jan 6, 20 Feb 3, 17, Mar 2 Mar/Apr		
Rule Simplification & Flexibility 6. Draft Ordinance	Apr/Jun		
Boards & Commissions July – September 2012			
City Council October/November 2012			
Travis County Commissioner's Court Fall/Winter 2012/13			

Contact Information

Matt Hollon Watershed Protection Department City of Austin (512) 974-2212 <u>matt.hollon@austintexas.gov</u>

<u>www.austintexas.gov/page/</u> watershed-protection-ordinance-0