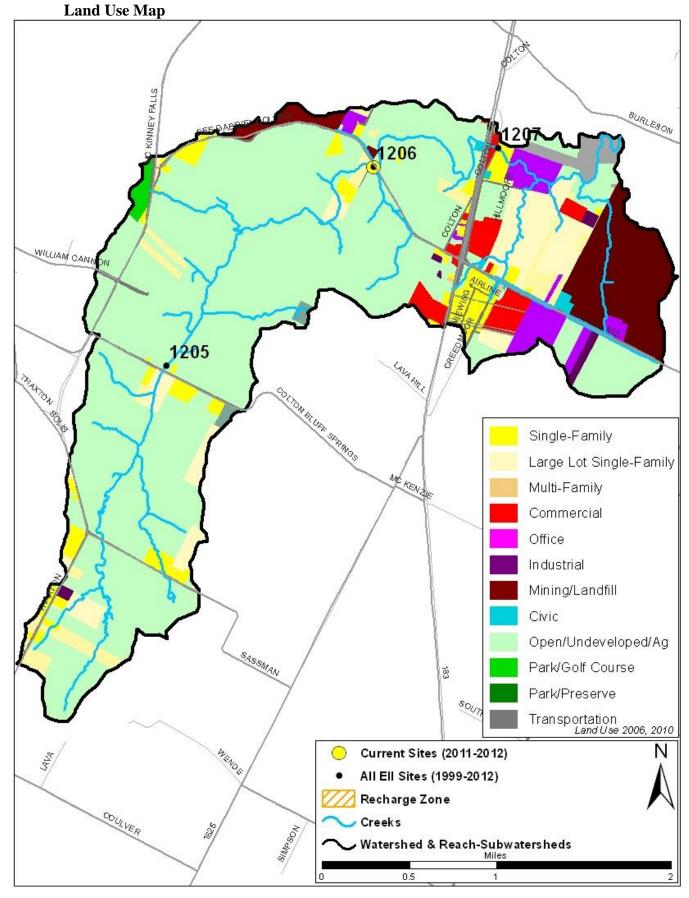
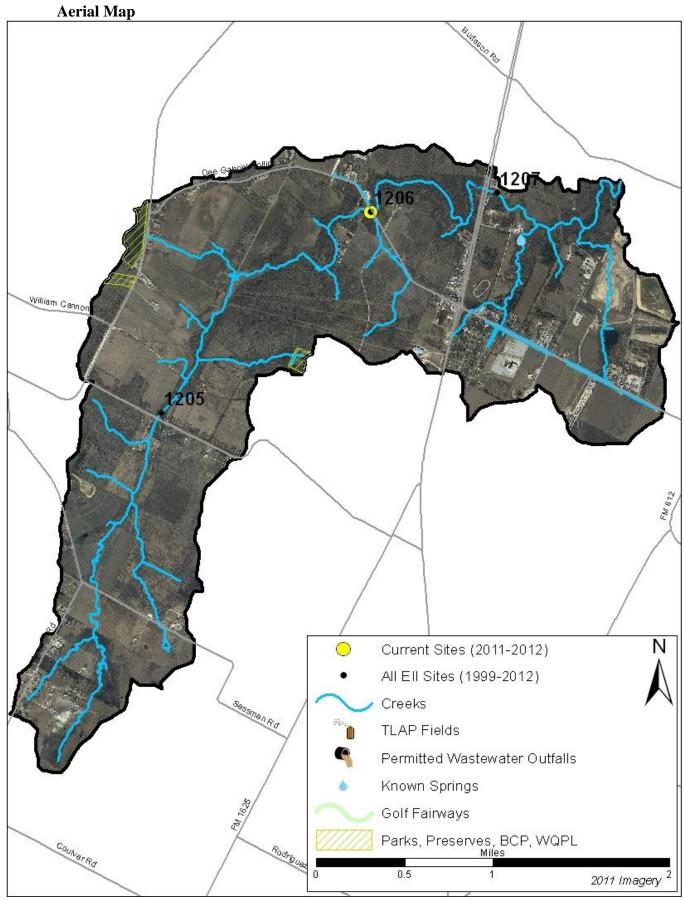
#### **Summary Sheet**

|                    |           |            |             |       | ····· |         |      |      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|--------------------|-----------|------------|-------------|-------|-------|---------|------|------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Catchment          | Total are | ea         |             |       | 5 sc  | ą. mile | s    |      | NI Ja     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | John .      |
|                    | Area in   | recharge   |             |       | 0     |         |      |      | N D       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAY A       |
|                    | Creek le  | ngth       |             |       | 7 m   | iles    |      |      |           | 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEA         |
|                    | Receivir  | ng water   |             |       | Oni   | on Cre  | ek   |      | 1 Vindo   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 国外大         |
| Demographics       | 2000 po   | pulation   |             |       | 420   |         |      |      |           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                    | 2030 pro  | ojected po | opulation   |       | 3,31  | 2       |      |      | -         | The said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Por -       |
|                    | 30 year   | projected  | % increa    | se    | 689   | %       |      |      | July      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same    |
| Land Use           | Impervi   | ous cover  | (2003 estin | nate) | 7.3   | %       |      |      |           | THE STATE OF THE S |             |
|                    | Impervi   | ous cover  | (2013 estir | nate) | 6.0   | %       |      |      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Overall EII Scores | 1999      | 2002       | 2005        | 200   | 8 /   | 2010    | 2012 | 2014 | Featured  | Phase I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other Phase |
| Overall Ell Scoles | 56        | 56         | 53          | 68    |       | 71      | 66   | 61   | Watershed | Watersheds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Watersheds  |

Flow Regime\* for Sample Sites on Cottonmouth Creek


|      |                         |     |     | 2002 | 2   |     |     |     | 2005 | 5      |     |     | 1   | 2008 | }   |     |     | 20  | 10  |     | 2011 |        | 20  | 12  |     |     |     | 2014 |     |     |
|------|-------------------------|-----|-----|------|-----|-----|-----|-----|------|--------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------|--------|-----|-----|-----|-----|-----|------|-----|-----|
| Site | Site Name               | Feb | Feb | May  | Aug | Nov | Mar | Jun | Jun  | Sep    | Dec | Feb | May | Jun  | Sep | Dec | Mar | May | May | Oct | Dec  | Mar    | May | Jul | Sep | Jan | Apr | May  | Jul | Sep |
|      |                         | WQ  | Bio | WQ   | WQ  | WQ  | Q   | Q   | Bio  | 8<br>W | S   | WQ  | Q   | Bio  | WQ  | WQ  | WQ  | WQ  | Bio | WQ  | WQ   | 8<br>W | Bio | WQ  | WQ  | WQ  | Q   | Bio  | WQ  | WQ  |
| 1205 | Colton-Bluff Springs Rd | n   |     | n    | n   |     |     |     |      |        |     |     |     |      |     |     |     |     |     |     |      |        |     |     |     |     |     |      |     |     |
| 1206 | D G Collins             | В   | В   | n    | В   | В   | В   | В   | В    | n      | n   | В   | В   | n    | n   | n   | В   | В   | В   | В   | n    | В      | В   | n   | В   | В   | В   | В    | В   | n   |
| 1207 | Colton Rd               | В   | В   | n    | n   | В   | В   | n   | В    | n      | n   |     |     |      |     |     |     |     |     |     |      |        |     |     |     |     |     |      |     |     |


\*B = baseflow n = no flow storm = storm flow blue = Samples were taken light blue = Samples were not taken blank = not visited

**Index scores\* for Cottonmouth Creek sites by year** 

|             |            | maca scores for co                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , ea ea a     |            | <b>200</b> 0 8 | J J Cur             |                       |              |                     |                    |                    |
|-------------|------------|------------------------------------------------------|-----------------------------------------|---------------|------------|----------------|---------------------|-----------------------|--------------|---------------------|--------------------|--------------------|
| Reach       | Site       | Site Name                                            | Year                                    | Water Quality | Sediment** | Contact Rec.   | Non-Contact<br>Rec. | Physical<br>Integrity | Aquatic Life | Benthic<br>subindex | Diatom<br>subindex | Total EII<br>Score |
| CTM1        | 1205       | Cottonmouth Creek @ Colton-Bluff Springs             | 1999                                    | 65            | 83         | 99             | 65                  | 58                    |              |                     |                    | 62                 |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 1999                                    | 48            | 83         | 96             | 77                  | 56                    |              |                     |                    | 60                 |
| CTM1        | 1207       | Cottonmouth Creek @ Colton Road                      | 1999                                    | 53            | 83         | 68             | 32                  | 33                    |              |                     |                    | 45                 |
|             |            |                                                      |                                         |               |            |                |                     |                       |              |                     |                    |                    |
| CTM1        | 1205       | Cottonmouth Creek @ Colton-Bluff Springs             | 2002                                    |               | 64         |                | 72                  | 55                    |              |                     |                    | 48                 |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 2002                                    | 40            | 64         | 65             | 78                  | 62                    | 29           | 40                  | 18                 | 56                 |
| CTM1        | 1207       | Cottonmouth Creek @ Colton Road                      | 2002                                    | 48            | 64         | 92             | 52                  | 57                    | 34           | 45                  | 23                 | 58                 |
|             |            | •                                                    |                                         |               |            |                |                     |                       |              |                     |                    |                    |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 2005                                    | 36            | 68         | 37             | 57                  | 51                    | 44           | 39                  | 49                 | 49                 |
| CTM1        | 1207       | Cottonmouth Creek @ Colton Road                      | 2005                                    | 53            | 68         | 45             | 59                  | 61                    | 61           |                     | 61                 | 58                 |
|             |            |                                                      |                                         |               |            |                |                     |                       |              |                     |                    |                    |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 2008                                    | 67            | 81         | 47             | 77                  | 68                    | 65           | 65                  |                    | 68                 |
|             | 1          |                                                      |                                         |               |            |                |                     |                       |              |                     |                    |                    |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 2010                                    | 65            | 76         | 86             | 73                  | 54                    | 71           | 74                  | 68                 | 71                 |
| CTM4        | 1206       | Cottonmouth Crook @ Doo Cohriel Collins              | 2012                                    | 49            | 82         | 69             | 67                  | 62                    | 60           | 97                  | 38                 | 66                 |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 2012                                    | 49            | <b>0</b> 2 | 09             | 67                  | 02                    | 68           | 97                  | 30                 | 00                 |
| CTM1        | 1206       | Cottonmouth Creek @ Dee Gabriel Collins              | 2014                                    | 56            | 81         | 80             | 74                  | 34                    | 42           | 32                  | 52                 | 61                 |
| blank cells | indicate p | parameter was not collected, blank row indicate site | was dropp                               | ed            | *          | *sedim         | ent samp            | les only co           | llected a    | t the dov           | vnstream           | site               |
| 100-87.5    | Evcellent  | 87 5-75 V Good 75-62 5 Good 62 5-5                   | 0 Fair                                  | 50-37 5       | Margina    |                | 37 5-25 Pc          | or                    | 25-12.5      | Rad                 | 12 5-0 \           | / Bad              |

SR-15-08 165 July 2015





## **Cottonmouth Creek Watershed** <sup>1</sup>

Water Quality Data – <u>Temperature, Conductivity, pH, Dissolved Oxygen & E. coli</u> <u>for 2014 Sample Sites</u> (Downstream to Upstream)

| Qualifiers to | >   | greater than              | Qualifiers to | (blank) | Useable                |
|---------------|-----|---------------------------|---------------|---------|------------------------|
| the left of   | <   | less than                 | the right of  | S       | Exceeds standard range |
| value:        | < J | less than detection limit | value:        | ם       | Deinsted feiled OC     |
|               | J   | Estimated                 |               | ĸ       | Rejected, failed QC    |

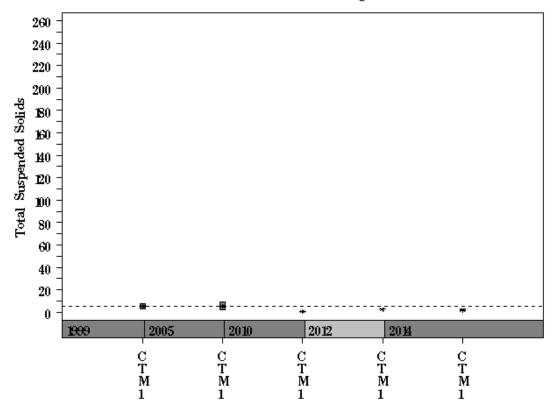
|                           |        |       |            |    | Temp. |      |    | Cond. |      |    | Hq    |      |    | D.O.  |      |    | E.coli |      |
|---------------------------|--------|-------|------------|----|-------|------|----|-------|------|----|-------|------|----|-------|------|----|--------|------|
| Site Name                 | Site # | Reach | Date       | <> | Value | flag | <> | Value  | flag |
| Cottonmouth @ D G Collins | 1206   | CTM1  | 01/15/2014 |    | 14.1  |      |    | 688   |      |    | 8.38  |      |    |       |      |    | 17.3   |      |
| Cottonmouth @ D G Collins | 1206   | CTM1  | 04/17/2014 |    | 18.0  |      |    | 852   |      |    | 8.04  |      |    | 5.0   |      |    | 58.3   |      |
| Cottonmouth @ D G Collins | 1206   | CTM1  | 05/06/2014 |    | 20.3  |      |    | 844   |      |    | 7.51  |      |    | 5.6   |      |    |        |      |
| Cottonmouth @ D G Collins | 1206   | CTM1  | 07/02/2014 |    | 24.0  |      |    | 787   |      |    | 7.61  |      |    | 5.8   |      |    | 20.1   |      |
| Site 1206 Mean            |        |       |            |    | 19.1  |      |    | 793   |      |    | 7.89  |      |    | 5.5   |      |    | 31.9   |      |
| Watershed Mean            |        |       |            |    | 19.1  |      |    | 793   |      |    | 7.89  |      |    | 5.5   |      |    | 31.9   |      |

Orange highlighting indicates that the value exceeds one standard deviation from the mean of all E.I.I. sites combined.

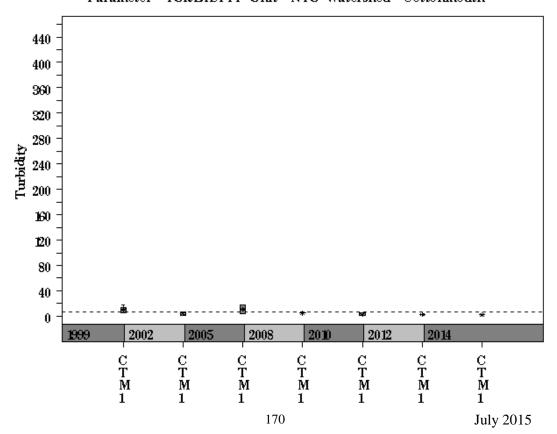
|                      | Summary Statistics for all 2013 – 2014 E.I.I. Sites Combined. |                      |                      |                               |                               |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------|----------------------|----------------------|-------------------------------|-------------------------------|--|--|--|--|--|--|
| Parameter            | 2013-2014<br>Average                                          | 2013-2014<br>Minimum | 2013-2014<br>Maximum | 1 Standard<br>Deviation Above | 1 Standard<br>Deviation Below |  |  |  |  |  |  |
| Temperature (C°)     | 19.6                                                          | 8.6                  | 34.0                 | 25.8                          |                               |  |  |  |  |  |  |
| Conductivity (uS/cm) | 711                                                           | 107                  | 1783                 | 942                           |                               |  |  |  |  |  |  |
| pH (Standard units)  | 7.86                                                          | 6.96                 | 8.97                 | 8.19                          | 7.52                          |  |  |  |  |  |  |
| D.O. (mg/l)          | 8.1                                                           | 1.2                  | 30.5                 | 11.4                          | 4.8                           |  |  |  |  |  |  |
| E.coli. (col/100ml)  | 435                                                           | 1                    | 4840                 | 1127                          |                               |  |  |  |  |  |  |

Water Quality Data – <u>Ammonia, Nitrate / Nitrite, Ortho-Phosphorus, Total Suspended Solids & Turbidity</u> <u>for 2014 Sample Sites</u> (Downstream to Upstream)

| Qualifiers to | >   | greater than              | Qualifiers to | (blank) | Useable                |
|---------------|-----|---------------------------|---------------|---------|------------------------|
| the left of   | <   | less than                 | the right of  | S       | Exceeds standard range |
| value:        | < J | less than detection limit | value:        | D       | Dejected failed OC     |
|               | J   | Estimated                 |               | K       | Rejected, failed QC    |

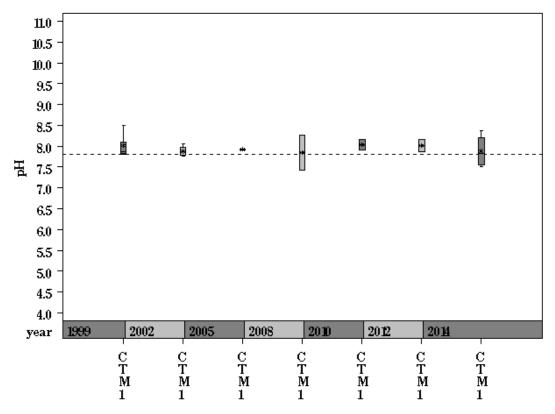

|                           |              |            |               | NH3-N |      | N  | 103/NO | 2    |    | Ortho-P |      |    | T.S.S. |      |    | Turb. |      |
|---------------------------|--------------|------------|---------------|-------|------|----|--------|------|----|---------|------|----|--------|------|----|-------|------|
| Site Name                 | Site # Reach | Date       | <>            | Value | flag | <> | Value  | flag | <> | Value   | flag | <> | Value  | flag | <> | Value | flag |
| Cottonmouth @ D G Collins | 1206 CTM1    | 01/15/2014 | 7             | 0.008 |      |    | 1.69   |      | ۲> | 0.004   |      |    | 1.7    |      |    | 4.9   | R    |
| Cottonmouth @ D G Collins | 1206 CTM1    | 04/17/2014 |               | 0.036 |      |    | 1.07   |      |    | 0.011   | R    |    | 1.1    |      |    | 1.7   | R    |
| Cottonmouth @ D G Collins | 1206 CTM1    | 05/06/2014 |               |       |      |    |        |      |    |         |      |    |        |      |    |       |      |
| Cottonmouth @ D G Collins | 1206 CTM1    | 07/02/2014 | <b>&lt;</b> J | 0.008 |      |    | 1.04   |      |    | 0.009   |      |    | 3.3    |      |    | 2.3   |      |
| Site 1206 Mean            |              |            |               | 0.017 |      |    | 1.27   |      |    | 0.008   |      | ,  | 2.0    |      |    | 3.0   |      |
| Watershed Mean            |              |            |               | 0.017 |      |    | 1.27   |      |    | 0.008   |      |    | 2.0    |      |    | 3.0   |      |

Orange highlighting indicates that the value exceeds one standard deviation from the mean of all E.I.I. sites combined.

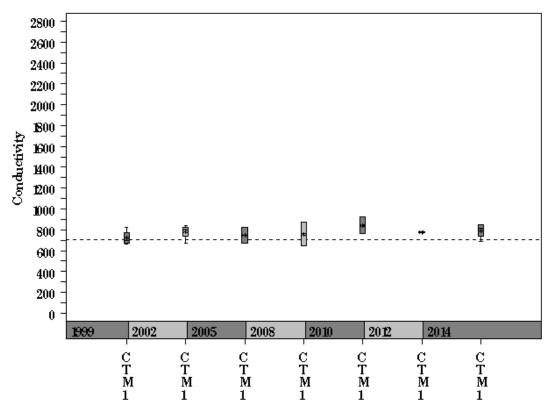

|                 | Summary Statistics for all 2013 – 2014 E.I.I. Sites Combined. |                      |                      |                            |  |  |  |  |  |  |
|-----------------|---------------------------------------------------------------|----------------------|----------------------|----------------------------|--|--|--|--|--|--|
| Parameter       | 2013-2014<br>Mean                                             | 2013-2014<br>Minimum | 2013-2014<br>Maximum | 1 Standard Deviation Above |  |  |  |  |  |  |
| NH3-M (mg/l)    | 0.031                                                         | 0.008                | 2.250                | 0.150                      |  |  |  |  |  |  |
| NO3-N (mg/l)    | 1.16                                                          | 0.01                 | 16.30                | 4.02                       |  |  |  |  |  |  |
| Ortho-P (mg/l)  | 0.041                                                         | 0.004                | 1.360                | 0.164                      |  |  |  |  |  |  |
| TSS (mg/l)      | 5.6                                                           | 1.0                  | 70.0                 | 15.3                       |  |  |  |  |  |  |
| Turbidity (NTU) | 4.5                                                           | 0.0                  | 97.1                 | 13.2                       |  |  |  |  |  |  |

Data Summary Graphs – <u>Total Suspended Solids</u> and <u>Turbidity</u> (Downstream to Upstream by Year)

Parameter= TOTAL SUSPENDED SOLIDS Unit= mg/L Watershed= Cottonmouth

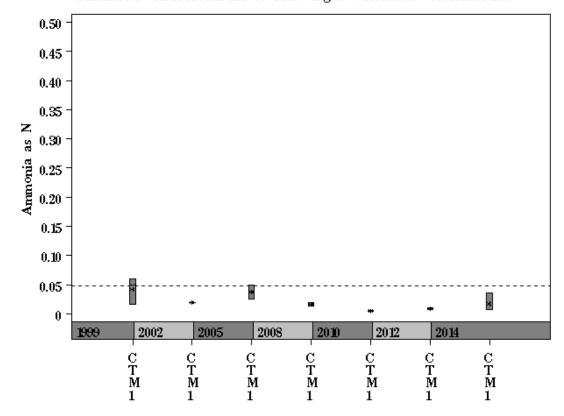


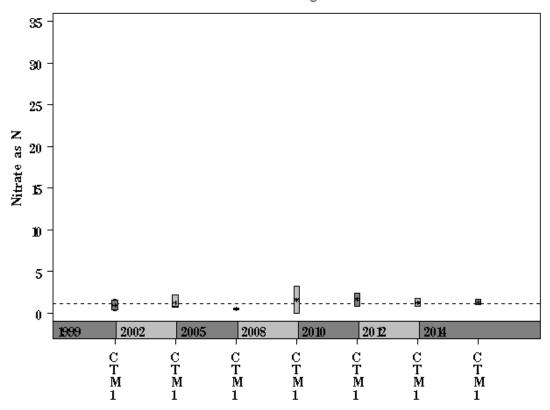

Parameter= TURBIDITY Unit= NTU Watershed= Cottonmouth




Data Summary Graphs – <u>pH</u> and <u>Conductivity</u> (Downstream to Upstream by Year)

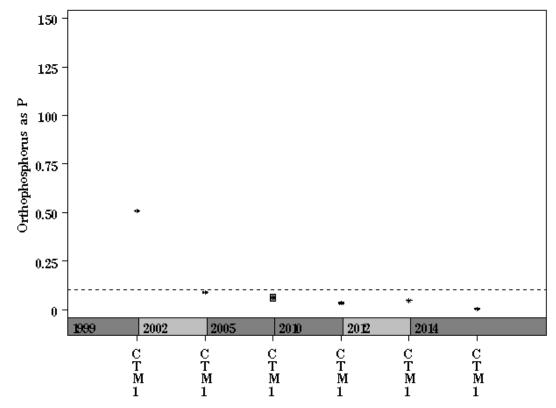
#### Parameter = PH Unit = Standard units Watershed = Cottonmouth



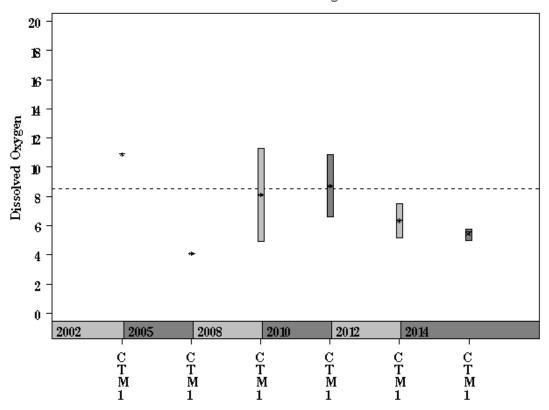


Parameter = CONDUCTIVITY Unit = uS/cm Watershed = Cottonmouth



Data Summary Graphs – <u>Ammonia</u> and <u>Nitrate/Nitrite</u> (Downstream to Upstream by Year)

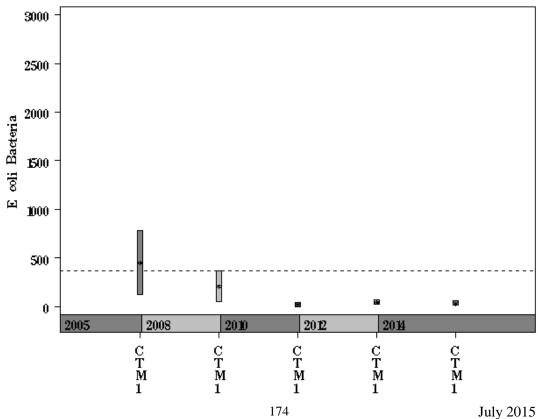

Parameter = AMMONIA AS N Unit = mg/L Watershed = Cottonmouth





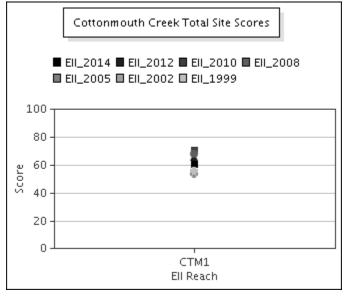

Data Summary Graphs – Orthophosphate and Dissolved Oxygen (Downstream to Upstream by Year)

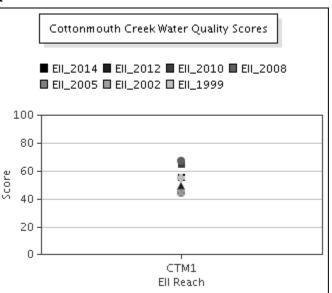
Parameter=ORTHOPHOSPHORUS AS P Unit=mg/L Watershed=Cottonmouth

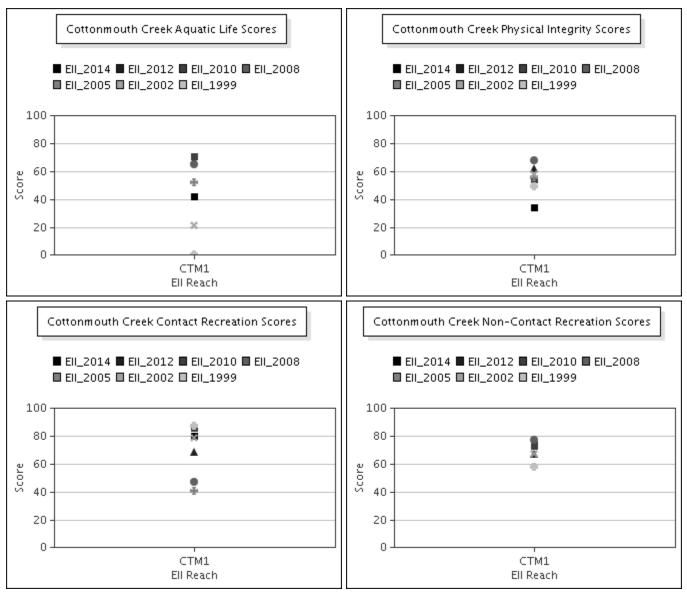



Parameter = DISSOLVED OXYGEN Unit = mg/L Watershed = Cottonmouth




Data Summary Graphs – <u>E.coli</u> (Downstream to Upstream by Year)


Parameter = E COLI BACTERIA Unit = MPN/100mL Watershed = Cottonmouth




SR-15-08

Score Summary – Reach scores for each sample year







Benthic Macroinvertebrates – <u>Taxa List, Pollution Tolerance Index & Functional Feeding Group</u> <u>for 2014 Sample Sites (Downstream to Upstream)</u>

| Benthic<br>Macroinvertebrate ID | PTI | FFG  | Cottonmouth<br>@ D G Collins<br>(Site 1206) |
|---------------------------------|-----|------|---------------------------------------------|
| Argia sp.                       | 6   | Р    | 1                                           |
| Cheumatopsyche sp.              | 6   | FC   | 10                                          |
| Chironomidae                    | 6   | P,FC | 2                                           |
| Microvelia sp.                  | 6   | Р    | 9                                           |
| Tanypodinae                     | 6   | Р    | 2                                           |
| Anopheles sp.                   | 8   | FC   | 1                                           |
| Oligochaeta                     | 8   | CG   | 1                                           |
| Physella sp.                    | 9   | SC   | 23                                          |
| Hydra sp.                       |     |      | 1                                           |

Benthic Macroinvertebrates – Metric Summary for 2014 Sample Sites (Downstream to Upstream)

|                                          | Cottonmouth                  |
|------------------------------------------|------------------------------|
| Scoring Metric                           | @ D G Collins<br>(Site 1206) |
| Number of Taxa *                         | 8                            |
| Hilsenhoff Biotic Index *                | 7.5                          |
| Number of Ephemeroptera Taxa *           | 0                            |
| Percent of Total as Chironomidae *       | 8                            |
| Number of EPT Taxa *                     | 1                            |
| Percent of Total as EPT *                | 20                           |
| Percent of Total as Predator *           | 28                           |
| Number of Intolerant Taxa *              | 0                            |
| Percent Dominance (Top 3 Taxa) *         | 84                           |
| EPT / EPT + Chironomidae                 | 1                            |
| Number of Diptera Taxa                   | 2                            |
| Number of Non-Insect Taxa                | 3                            |
| Number of Organisms                      | 50                           |
| Percent Dominance (Top 1 Taxa)           | 46                           |
| Percent of Total as Collector / Gatherer | 2                            |
| Percent of Total as Dominant Guild (FFG) | 46                           |
| Percent of Total as Elmidae              | 0                            |
| Percent of Total as Filterers            | 30                           |
| Percent of Total as Grazers (PI & SC)    | 46                           |
| Percent of Total as Tolerant Organisms   | 46                           |
| Percent of Trichoptera as Hydropsychidae | 100                          |
| Ratio of Intolerant : Tolerant Organisms | 0.00                         |
| TCEQ Qualitative Aquatic Life Use Score  | 18                           |
| TCEQ Quantitative Aquatic Life Use Score | 19                           |

- \* Ell scoring parameter: Nine metric parameters are used in the calculation of the Ell Benthic Subindex score. Other metrics are shown to supplement evaluation.
- 1. # of Taxa: Higher diversity (number of taxa) correlates with greater biological integrity. The average number of taxa per site for 2013/2014 samples was 15; the lowest value was 5 and the highest value was 30.
- 2. Hilsenhoff Biotic Index (HBI): HBI values range from 0 to 10. Low HBI values reflect a higher abundance of taxa that are sensitive to organic (nutrient) pollution, thus a lower level of this type of pollution. The average HBI per site for 2013/2014 samples was 5.4; the lowest value was 3.7 and the highest value was 8.1.
- 3. # of Ephemeroptera taxa: A higher number of Ephemeroptera (mayfly) taxa correlates with greater biological integrity. The average number of taxa per site for 2013/2014 samples was 2; the lowest value was 0 and the highest value was 7.
- 4. % of total as Chironomidae: The percentage of the sample represented by the Dipteran family Chironomidae will increase with a decrease in biological integrity. The average percent Chironomidae per site for 2013/2014 samples was 16%; the lowest value was 0% and the highest value was 77%.
- 5. # of EPT Taxa: A higher number of Ephemeroptera (mayfly), Plecoptera (stonefly) and Trichoptera (caddisfly) taxa correlates with greater biological integrity. The average number of EPT taxa per site for 2013/2014 samples was 4; the lowest value was 0 and the highest value was 12.
- 6. % of total as EPT: The percentage of the sample represented by the insect orders Ephemeroptera (mayfly), Plecoptera (stonefly) and Trichoptera (caddisfly) will decrease with a decrease in biological integrity. The average percent EPT taxa per site for 2013/2014 samples was 46%; the lowest value was 0% and the highest value was 89%.
- % of total as Predator: The percentage of the sample represented by predators is variable with regard to biological integrity. The
  average percent predator per site for 2013/2014 samples was 31%; the lowest value was 3% and the highest value was 82%.
- 8. # of Intolerant Taxa: A higher number of pollution intolerant taxa correlates with greater biological integrity. The average number of intolerant taxa per site for 2013/2014 samples was 5; the lowest value was 0 and the highest value was 15.
- 9. % Dominance (top 3 taxa): The percentage of the sample represented by the three most abundant taxa will increase with a decrease in biological integrity. The average percent of sample dominated by the top three taxa per site for 2013/2014 samples was 72%; the lowest value was 39% and the highest value was 96%.

Diatoms - <u>Taxa List & Pollution Tolerance Index for 2014 Sample Sites (</u>Downstream to Upstream)

|                                    |     | Cottonmouth @ |
|------------------------------------|-----|---------------|
|                                    |     | D G Collins   |
| Diatom Species Name                | PTI | (Site 1206)   |
| Achnanthidium minutissimum         | 3   | 4             |
| Amphora ovalis                     | 3   | 2             |
| Amphora pediculus                  | 3   | 2             |
| Caloneis bacillum                  | 3   | 18            |
| Denticula elegans                  | 3   | 2             |
| Denticula subtilis                 | 3   | 4             |
| Diploneis parma                    | 3   | 3             |
| Gomphonema affine                  | 3   | 3             |
| Halamphora montana                 | 3   | 2             |
| Navicula radiosa                   | 3   | 1             |
| Navicula tripunctata               | 3   | 9             |
| Nitzschia linearis                 | 3   | 1             |
| Reimeria sinuata                   | 3   | 22            |
| Achnantheiopsis lanceolata         | 2   | 130           |
| Fragilaria capucina var. mesolepta | 2   | 4             |
| Halamphora veneta                  | 2   | 3             |
| Navicula recens                    | 2   | 4             |
| Navicula symmetrica                | 2   | 8             |
| Navicula veneta                    | 2   | 4             |
| Nitzschia amphibia                 | 2   | 90            |
| Nitzschia microcephala             | 2   | 115           |
| Nitzschia paleacea                 | 2   | 1             |
| Sellaphora laevissima              | 2   | 4             |
| Surirella brebissonii              | 2   | 9             |
| Tryblionella apiculata             | 2   | 16            |
| Tryblionella levidensis            | 2   | 2             |
| Gomphonema parvulum                | 1   | 2             |
| Amphora copulata                   |     | 5             |
| Cocconeis placentula var. euglypta |     | 2             |
| Eolimna minima                     |     | 18            |
| Placoneis exigua                   |     | 3             |
| Ulnaria acus                       |     | 1             |
| Ulnaria ulna                       |     | 6             |

Diatoms – Metric Summary for 2014 Sample Sites (Downstream to Upstream)

| Scoring Metric                            | Cottonmouth @<br>D G Collins<br>(Site 1206) |
|-------------------------------------------|---------------------------------------------|
| Cymbella Richness                         | 1                                           |
| Number of organisms                       | 500                                         |
| Number of taxa                            | 33                                          |
| Percent motile taxa                       | 53                                          |
| Percent similarity to reference condition | 11                                          |
| Pollution tolerance index                 | 2.15                                        |

- \* Ell scoring parameter: Four metric parameters are used in the calculation of the Ell Diatom Subindex score: Cymbella richness, percent motile taxa, percent similarity to reference condition and pollution tolerance index. Number of taxa is non-scoring, but is shown to supplement evaluation. The number of organisms is typically a sample of 500, but occasionally differs due to sample conditions.
- Cymbella Richness: The Cymbelloid taxa include species in the genus Cymbella, in addition to some species belonging to the
  genera Cymbellopsis, Cymbopleura, Encyonema, Encyonemopsis, Navicymbula and Reimeria. Their presence highlights the
  presence of sensitive species, especially with regard to impervious cover, and this value increases with an increase in overall water
  quality. The average number of Cymbelloid taxa per site for 2013/2014 samples was 3; the lowest value was 0 and the highest
  value was 7.
- 2. % Motile Taxa: This is a siltation index showing the relative abundance of genera that are able to move towards the surface if covered by silt. A higher percentage is indicative of a degraded condition caused by increased silt pollution. The average percent motile taxa per site for 2013/2014 samples was 16%; the lowest value was 0% and the highest value was 77%.
- 3. % similarity to reference condition: This percentage compares a site to reference sites that are selected based on having low percent impervious cover. A higher percentage reflects greater biological integrity. The average percent similarity per site for 2013/2014 samples was 31%; the lowest value was 6% and the highest value was 57%.
- 4. Pollution Tolerance Index (PTI): This is a total value for a sample, which is a function of the abundance of each taxon (usually species) in a sample and the individual PTI's for each of those taxa. Individual PTI's for each taxon range from 1 (most pollution tolerant) to 4 (most pollution sensitive), thus higher total PTI's for a site reflect greater biological integrity. The average PTI per site for 2013/2014 samples was 2.76; the lowest value was 1.70 and the highest value was 3.45.

## **Cottonmouth Creek Watershed** <sup>1</sup>

**Site Photographs** 





1205\_t00-ds1-06\_20\_2000

1205\_t00-ds-03\_28\_2002





1207\_t00-ds-03\_28\_2002

1207\_t00-us-06\_15\_2005





1207\_t00-ds-06\_15\_2005

1207\_t00-ur-06\_15\_2005

**Site Photographs** 



1206\_t00-ds-06\_20\_2000



1206\_t00-ds-03\_28\_2002



1206\_t00-us-06\_15\_2005



1206\_t0-ds-06\_17\_2008



1206\_00-us-05\_18\_2010



1206\_00-ds-05\_18\_2010

This page left intentionally blank