| Phase | Strategy
Category | Action # | Actions | Timeframe | Currently in an
Adopted City Plan? | Action
Status | Owner of the
Action | Participating /
Active
Stakeholders | Barriers or
Limiting
Factors | Avoided
Emissions | Ancillary
Benefits | |-------|---|----------|---|-------------------------------------|---------------------------------------|------------------|--|---|---|--|---| | | - | | | 2015-2020
2020-2030
2030-2050 | Generation Plan | | <u>M</u> ulti <u>F</u> amily
<u>N</u> onprofit,
NGOs | Business Government MultiFamily Nonprofit, NGOs Residents, All SF-Single-family | <u>F</u> unding <u>P</u> olicy <u>B</u> ehavior <u>C</u> hange <u>T</u> echnology | <u>D</u> irect
<u>I</u> ndirect
<u>L</u> arge
<u>S</u> mall
<u>C</u> onceptual/ NA | Q uality life
A ffordable
H ealth
J obs
W ater | | 1 | Behavior
Change and
Education | I B(-1 | Increase efforts to engage customers to drive energy efficiency and demand response: increase transparency of energy costs in multi-family and commerical buildings; evaluate feasibility of neighborhood wide energy efficiency challenges | 2015-2020 | N | N | G,B,R | G,B,R (multi-
family) | P,BC | DS | А | | 1 | Behavior
Change and
Education | BC-2 | Implement time of use / dynamic rates, including user educational efforts, supported by advanced metering and other technologies | 2015-2020 | N, but in budget docs? | D (Time of use); | G | All | T, BC | DS | Major cost
savings by
avoiding peak
prices (A) | | 1 | Behavior
Change and
Education | BC-3 | Expand educational efforts through social media, applications, competitions (try individual and neighborhood scale competitions) and exposure/Media campaigns using local celebrities to drive behavior change | 2015-2020 | N, but AE has programs | C, N | G, N | B,R | F | DS | More
informed
citizenry | | 1 | Behavior
Change and
Education | BC-4 | Utilize meter reads and bill format/presentation to influence behavior. Present energy use in actionable and more timely formats/ways to customers. | 2015-2020 | N | N | G | B, R | P,BC | С | А | | 2 | Behavior
Change and
Education | BC-5 | Promote programs for individuals to manage their own carbon footprint (carbon diet) | 2015-2020 | N | D | G,B,N | B,R,N | ВС | DS | н | | 2 | Behavior
Change and
Education | BC-6 | Educate the local building construction and professional design community about the importance and benefits of climate-appropriate passive solar building design strategies | 2015-2020 | N | N | G,B | G,B,R (multi-
family) | ВС | С | Q,A | | 1 | Buildings and
Integrated
Efficiency | BIE-1 | Explore financing mechanisms to enable energy efficiency, demand response, distributed generation, storage and more. Possible financing mechanisms which could enable large amounts of private sector retrofits include Property Assessed Clean Energy (PACE) and Warehouse for Energy Efficiency Loans (WHEEL) | 2015-2020 | N | N | G | G, B (Lenders,
contractors), R
(multi-family), N | Р | DL if on a large
scale | А, Ј | | 1 | Buildings and
Integrated
Efficiency | BIE-2 | Increase funding for energy efficiency rebates within constraints of rate affordability goals, and emphasize and market offerings or higher amounts that may attract new customers | 2015-2020 | N | Р | G | All | F | DL if on a large scale | A, J | | 1 | Buildings and
Integrated
Efficiency | BIE-3 | Identify high energy users in all sectors; target incentives and initiatives to those users to maximize impact | 2015-2020 | N | Р | G | All | P,BC,F | DL | A, J | | 1 | Buildings and
Integrated
Efficiency | BIE-4 | Promote specific high-impact strategies including envelope improvements (biggest impact), lighting retrofits (LEDs), HVAC improvements, water heating efficiency, and plug load reduction | 2015-2020 | Y | С | G,B,R | All | P,F,BC | DS | A, J | | 1 | Buildings and
Integrated
Efficiency | BIE-5 | Implement programs to reduce energy use and carbon intensity associated with water consumption (caveat: decreased impact if the water utility uses renewable energy to pump and treat water) | 2015-2020 | Υ | С | All | All | F,BC,P | DS | A, W | | 1 | Buildings and
Integrated
Efficiency | BIE-6 | Coordinated effort with AWU to reduce energy use and carbon intensity associated with consumption, treatment, and delivery of water, including peak shifting | 2020-2030 | Y | С | G | G | T,F | DL | A, W | | 1 | Buildings and
Integrated
Efficiency | BIE-7 | Expand the availability and use of automated demand response to more and new technologies | 2015-2020 | N | N | G, B | All | BC,T,P | DS | A, J | | 1 | Buildings and
Integrated
Efficiency | BIE-8 | Increase meter reading frequency and use the information to identify opportunities for utility action and to promote customer conservation and demand response | 2015-2020 | Y, smart meter program | Р | G | R, G | F | DS | | | 1 | Buildings and
Integrated
Efficiency | BIE-9 | Create a new minimum standard for existing building energy use; enforce the new standard | 2020-2030 | N | N | G | All | Р | DL | A, J | |---|---|--------|---|-----------|---|-------|-------|---------|----------|----|---------| | 1 | Buildings and
Integrated
Efficiency | BIE-10 | Consider the potential for net-zero new construction of residential and commercial buildings | 2020-2030 | N | Р | G | All | P,F,T | DL | J | | 1 | Buildings and
Integrated
Efficiency | BIE-11 | Educate designers, builders, code inspectors, and plan reviewers to gain higher compliance with new energy codes as they're implemented every 3 years | 2015-2020 | Υ | С | G, N | All | F,BC | DS | J | | 1 | Buildings and
Integrated
Efficiency | BIE-12 | Phase-in requirement to submeter new commercial office space as new permits are issued | 2020-2030 | N | N | G | G,B | Р | DS | | | 2 | Buildings and
Integrated
Efficiency | BIE-13 | Transition the AE Energy Efficiency program and codes to a performance model + measurement and verification; program customers would be incentivized to meet targets. (Includes giving credit for passive design strategies) | 2020-2030 | N | N | G | All | P,BC | DS | | | 2 | Buildings and
Integrated
Efficiency | BIE-14 | Enhanced sub-metering for demand response | 2020-2030 | N | N | G,B | G,B,R | P,BC,T,F | DS | | | 2 | Buildings and
Integrated
Efficiency | BIE-15 | Incorporate recommendations for passive solar subdivision and street/lot orientation into the land development code | 2020-2030 | N | N | G | All | Р | DS | Q, H, A | | 2 | Buildings and
Integrated
Efficiency | BIE-16 | Implement neighborhood wide projects to weatherize homes and increase energy efficiency and demand response | 2020-2030 | N | N | G | All | F,BC | DS | Q, H, A | | | | | | | | | | | | | | | 1 | Resource
Technologies | RT-1 | Begin a coordinated effort to prioritize strategic development and evolution of Smart Grid/Intelligent Energy Management Systems, within constraints of affordability goals, to further enable intermittent resources and use of EVs for storage/demand shift | 2015-2020 | N | C,D,P | G,B | G,B | F,P,T | С | Н, Ј | | 1 | Resource
Technologies | RT-2 | Prioritize investment in zero carbon-emitting resources at utility and/or customer scale: Utility-scale, community and distributed solar, including concentrating solar; Utility-scale wind (inland and coastal) | 2015-2020 | Υ | С | G,B,R | G,B,R,N | F,T,P,BC | DL | Q, H, J | | 1 | Resource
Technologies | RT-3 | Routinely evaluate resource technologies for opportunities to incrementally reduce carbon intensity including storage, distributed chilled water, biomass, geothermal, and nuclear, within constraints of rate affordability goals | Perpetual | Y | С | G | All | F,P,T | DL | | | 2 | Resource
Technologies | RT-4 | Explore and pilot storage options with grid functionality | 2015-2020 | N | С | G,B | G,B | F,T | С | | | 2 | Resource
Technologies | RT-5 | Explore incentives for electrification of carbon-fueled consumer products: hot water heater extended reservoirs, larger pads for battery-powered lawn mowers, weed wackers, chainsaws, etc. | 2020-2030 | N | N | G | G,R | F,BC | С | Q, H | | 2 | Resource
Technologies | RT-6 | Explore micro-grids as a carbon reduction strategy. Consider tradeoffs | 2030-2050 | N | N | G,B | G,B | F,P,T | С | |