

Travis County

Laboratory Number: 483861
Customer Sample ID: 723
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.	
Н	7.8	(6.5)	-	Mod. Alkaline	
Conductivity	176	(-)	umho/cm	None CL. Fertilizer Recommend	ed
Nitrate-N	19	(-)	ppm**		
Phosphorus	114	(50)	ppm		qft
Potassium	153	(175)	ppm		
Calcium	6,440	(180)	ppm		
Magnesium	267	(50)	ppm		
Sulfur	24	(13)	ppm		
Sodium	28	(-)	ppm		
ron					
Zinc					
Manganese					
Copper					
Boron					
imestone Requirement				0.00 lbs/1000sqft	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483862 Customer Sample ID: 727 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.2	(6.5)	-	Mod. Alkal	line					
216	(-)	umho/cm	None			CL	*		Fertilizer Recommended
0	(-)	ppm**							1.4 lbs N/1000sqft
97	(50)	ppm				mmuni	mmmi		0 lbs P2O5/1000sqft
157	(175)	ppm							0.4 lbs K20/1000sqft
15,916	(180)	ppm						I	0 lbs Ca/1000sqft
378	(50)	ppm				111111111111111111111111111111111111111			0 lbs Mg/1000sgft
35	(13)	ppm							0 lbs S/1000sqft
116	(-)	ppm			ı				
						1			
						į			
						i			
						!			
									0.00 lbs/1000sqft
	8.2 216 0 97 157 15,916 378 35	Results CL* 8.2 (6.5) 216 (-) 97 (50) 157 (175) 15,916 (180) 378 (50) 35 (13)	Results CL* Units 8.2 (6.5) - 216 (-) umho/cm 0 (-) ppm** 97 (50) ppm 157 (175) ppm 15,916 (180) ppm 378 (50) ppm 35 (13) ppm	Results CL* Units ExLow 8.2 (6.5) - Mod. Alka 216 (-) umho/cm None 0 (-) ppm** 97 (50) ppm 157 (175) ppm 15,916 (180) ppm 378 (50) ppm 35 (13) ppm	Results CL* Units ExLow VLow 8.2 (6.5) - Mod. Alkaline 216 (-) umho/cm None 0 (-) ppm** 97 (50) ppm	Results CL* Units ExLow VLow Low 8.2 (6.5) - Mod. Alkaline Mod. Alkaline 216 (-) umho/cm None 0 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483902
Customer Sample ID: 729
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.9	(6.5)	-	Slightly A	cid					
Conductivity	1,580	(-)	umho/cm	High			CI	*		Fertilizer Recommended
Nitrate-N	532	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	852	(50)	ppm				11111111111		IIIIIII	0 lbs P2O5/1000sqft
Potassium	1410	(175)	ppm		111111111		11111111111	mmi	Ш	0 lbs K20/1000sqft
Calcium	7,259	(180)	ppm	1111111111111111						0 lbs Ca/1000sqft
Magnesium	833	(50)	ppm	111111111111111						0 lbs Mg/1000sgft
Sulfur	121	(13)	ppm	111111111111111111111111111111111111111			11111111111			0 lbs S/1000sqft
Sodium	85	(-)	ppm		ШШ					
Iron										
Zinc								·		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI Critical laval in the maint					-					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483863
Customer Sample ID: 730
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	333	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**		l					0.9 lbs N/1000sqft
Phosphorus	108	(50)	ppm						I	0 lbs P2O5/1000sqft
Potassium	270	(175)	ppm	11111111111			11111111111	IIII		0 lbs K20/1000sqft
Calcium	8,698	(180)	ppm	11111111111			111111111111		I	0 lbs Ca/1000sqft
Magnesium	311	(50)	ppm				11111111111	111111		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	11111111111			11111111111	II .		0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
Zinc										
Manganese							i			
Copper							i			
Boron							-			
imestone Requirement				·						0.00 lbs/1000sqft
CL -Critical layed is the point w						r.		\ ·		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483864
Customer Sample ID: 731
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLo	w Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	452	(-)	umho/cm	None		CI	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	111111111111					0.9 lbs N/1000sqft
Phosphorus	59	(50)	ppm		Щинин		11		0 lbs P2O5/1000sqft
Potassium	673	(175)	ppm		принин		humi	II	0 lbs K20/1000sqft
Calcium	13,550	(180)	ppm	111111111111111111111111111111111111111				II	0 lbs Ca/1000sqft
Magnesium	369	(50)	ppm		ШШШ				0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm		111111111111		111		0 lbs S/1000sqft
Sodium	28	(-)	ppm	111111					
Iron									
Zinc						ļ ļ			
Manganese									
Copper									
Boron						ľ			
Limestone Requirement									0.00 lbs/1000sqft
			•						

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483865 Customer Sample ID: 732 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
ρΗ	7.5	(6.5)	-	Slightly Alkaline
Conductivity	1,420	(-)	umho/cm	Moderate CL* Fertilizer Recommended
Nitrate-N	151	(-)	ppm**	
Phosphorus	647	(50)	ppm	
Potassium	1554	(175)	ppm	
Calcium	13,883	(180)	ppm	
Magnesium	645	(50)	ppm	
Sulfur	445	(13)	ppm	
Sodium	202	(-)	ppm	
ron				
Zinc				
V anganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				rding pitrote N. codium and conductivity in recommended **ppm and/or

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483866 Customer Sample ID: 733 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рΗ	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	226	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	120	(50)	ppm			IIIIIIIIII		11111111111	II	0 lbs P2O5/1000sqft
Potassium	195	(175)	ppm)		0 lbs K20/1000sqft
Calcium	12,314	(180)	ppm	11111111111				. :		0 lbs Ca/1000sqft
Magnesium	463	(50)	ppm		111111111111	IIIIIIIIII		///////////	l	0 lbs Mg/1000sgft
Sulfur	34	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
Sodium	40	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483867 Customer Sample ID: 734 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.9	(6.5)	-	Mod. Alkaline
Conductivity	240	(-)	umho/cm	
Nitrate-N	17	(-)	ppm**	
Phosphorus	153	(50)	ppm	
Potassium	254	(175)	ppm	
Calcium	17,331	(180)	ppm	
Magnesium	458	(50)	ppm	
Sulfur	50	(13)	ppm	
Sodium	31	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				dina ritrata N. codium and conductivity) is recommended **********************************

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483903 Customer Sample ID: 735 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.0	(6.5)	-	Neutral						
Conductivity	1,560	(-)	umho/cm	High			CL	*		Fertilizer Recommended
Nitrate-N	123	(-)	ppm**	11111111111			11111111111		Ш	0 lbs N/1000sqft
Phosphorus	648	(50)	ppm				11111111111			0 lbs P2O5/1000sqft
Potassium	1584	(175)	ppm	1111111111111			11111111111		IIII	0 lbs K20/1000sqft
Calcium	6,041	(180)	ppm	1111111111111			11111111111	IIIIII		0 lbs Ca/1000sqft
Magnesium	521	(50)	ppm	1111111111111			11111111111		II	0 lbs Mg/1000sgft
Sulfur	296	(13)	ppm	1111111111111			11111111111		11111111111	0 lbs S/1000sqft
Sodium	186	(-)	ppm	111111111111		Ш				
ron										
Zinc							· ·			
V anganese										
Copper							i			
Boron							<u> </u>			
Limestone Requirement										0.00 lbs/1000sqft
CI Critical lavel in the maint										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483868
Customer Sample ID: 736
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. Alk	aline					
268	(-)	umho/cm	None			С	_*		Fertilizer Recommended
12	(-)	ppm**	11111111111	I					0.9 lbs N/1000sqft
256	(50)	ppm	11111111111			111111111111	hooni	Ш	0 lbs P2O5/1000sqft
540	(175)	ppm	11111111111		11111111111	11111111111	janananija Parananija		0 lbs K20/1000sqft
13,327	(180)	ppm							0 lbs Ca/1000sqft
472	(50)	ppm	11111111111			111111111111	homoni		0 lbs Mg/1000sgft
29	(13)	ppm				111111111111	11111		0 lbs S/1000sqft
21	(-)	ppm	Ш						
									0.00 lbs/1000sqft
	7.9 268 12 256 540 13,327 472 29 21	Results CL* 7.9 (6.5) 268 (-) 12 (-) 256 (50) 540 (175) 13,327 (180) 472 (50) 29 (13) 21 (-)	Results CL* Units 7.9 (6.5) - 268 (-) umho/cm 12 (-) ppm** 256 (50) ppm 540 (175) ppm 13,327 (180) ppm 472 (50) ppm 29 (13) ppm 21 (-) ppm	Results CL* Units ExLow	Results CL* Units ExLow VLow 7.9 (6.5) -	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod 7.9 (6.5) - Mod Alkaline 268 (-) umho/cm None Cl 12 (-)	Results CL* Units	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483869 Customer Sample ID: 737 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.6	(6.5)	-	Mod. Alk	aline					
Conductivity	252	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	175	(50)	ppm	111111111111				111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	266	(175)	ppm	111111111111	11111111111			11111		0 lbs K20/1000sqft
Calcium	6,612	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	508	(50)	ppm		11111111111			//////////	II	0 lbs Mg/1000sgft
Sulfur	42	(13)	ppm	111111111111	11111111111			11111111111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483944
Customer Sample ID: 738
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.0	(6.5)	-	Mod. Al	kaline					
219	(-)	umho/cm	None			CI	<u>*</u>		Fertilizer Recommended
3	(-)	ppm**	II						1.3 lbs N/1000sqft
96	(50)	ppm	ШШШ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		l	0 lbs P2O5/1000sqft
317	(175)	ppm	1111111111			•)111111		0 lbs K20/1000sqft
5,218	(180)	ppm							0 lbs Ca/1000sqft
594	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		II .	0 lbs Mg/1000sgft
14	(13)	ppm	1111111111				1		0 lbs S/1000sqft
326	(-)	ppm	1111111111		1111111				
									0.00 lbs/1000sqft
	8.0 219 3 96 317 5,218 594 14	Results CL* 8.0 (6.5) 219 (-) 3 (-) 96 (50) 317 (175) 5,218 (180) 594 (50) 14 (13)	Results CL* Units 8.0 (6.5) - 219 (-) umho/cm 3 (-) ppm** 96 (50) ppm 317 (175) ppm 5,218 (180) ppm 594 (50) ppm 14 (13) ppm	Results CL* Units ExLow 8.0 (6.5) - Mod. All 219 (-) umho/cm None 3 (-) ppm*** II 96 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 8.0 (6.5) - Mod. Alkaline 219 (-) umho/cm None 3 (-) ppm** II 96 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low 8.0 (6.5) - Mod. Alkaline - 219 (-) umho/cm None - 3 (-) ppm*** II - 96 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484095
Customer Sample ID: 739
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly A	lkaline					
Conductivity	266	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	80	(50)	ppm	11111111111111			шшц	IIIIIII		0 lbs P2O5/1000sqft
Potassium	88	(175)	ppm		ШШ					1.9 lbs K20/1000sqft
Calcium	6,968	(180)	ppm	11111111111111						0 lbs Ca/1000sqft
Magnesium	444	(50)	ppm	11111111111111	ШШ		mmi		l	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	111111111111111	111111111		шш	IIIIII		0 lbs S/1000sqft
Sodium	20	(-)	ppm	IIII						
Iron							l l			
Zinc							ļ.			
Manganese							į.			
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483945
Customer Sample ID: 740
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	403	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	41	(-)	ppm**	
Phosphorus	111	(50)	ppm	
Potassium	468	(175)	ppm	
Calcium	8,560	(180)	ppm	
Magnesium	519	(50)	ppm	
Sulfur	19	(13)	ppm	
Sodium	345	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding nitrate N codium and conductivity) is recommended **ppm mar/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483904
Customer Sample ID: 741
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow V	Low/	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Mod. Alkalir	ne					
Conductivity	426	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**		ШШ	1111111111				0 lbs N/1000sqft
Phosphorus	140	(50)	ppm			1111111111	шшқ	mmi	l l	0 lbs P2O5/1000sqft
Potassium	381	(175)	ppm		IIIIIIIII	1111111111	mmn			0 lbs K20/1000sqft
Calcium	8,827	(180)	ppm	111111111111111111111111111111111111111						0 lbs Ca/1000sqft
Magnesium	775	(50)	ppm		11111111	1111111111		mmi	II .	0 lbs Mg/1000sgft
Sulfur	36	(13)	ppm			1111111111	шшц			0 lbs S/1000sqft
Sodium	50	(-)	ppm	1111111111						
Iron										
Zinc							I			
Manganese							į			
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483905
Customer Sample ID: 742
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	430	(-)	umho/cm	
Nitrate-N	116	(-)	ppm**	
Phosphorus	207	(50)	ppm	
Potassium	271	(175)	ppm	
Calcium	24,717	(180)	ppm	
Magnesium	345	(50)	ppm	
Sulfur	41	(13)	ppm	
Sodium	37	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrate NI andique and conductivity) is recommended **prop mar/les

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483906 Customer Sample ID: 743 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	355	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	111111111111	l					0.9 lbs N/1000sqft
Phosphorus	185	(50)	ppm	111111111111				11111111111	II	0 lbs P2O5/1000sqft
Potassium	467	(175)	ppm	111111111111				mmi	l	0 lbs K20/1000sqft
Calcium	9,481	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	550	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm				!!!!!!!!!!!	11111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
ron										
Zinc										
Manganese							i			
Copper							i			
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483870 Customer Sample ID: 744 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.8	(6.5)	-	Mod. Alk	aline			-		
Conductivity	368	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
litrate-N	19	(-)	ppm**	11111111111		Ш				0.5 lbs N/1000sqft
Phosphorus	17	(50)	ppm	11111111111		ШШ				2.6 lbs P2O5/1000sqft
otassium	244	(175)	ppm	11111111111)III		0 lbs K20/1000sqft
Calcium	8,942	(180)	ppm	11111111111			:		II	0 lbs Ca/1000sqft
Magnesium	168	(50)	ppm	11111111111		IIIIIIIIII		111		0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm	11111111111		IIIIIIIIII		1111111		0 lbs S/1000sqft
Sodium	22	(-)	ppm	IIII						
ron								l		
linc								l		
Manganese										
Copper								i		
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483871
Customer Sample ID: 745
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. All	kaline					
Conductivity	216	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	282	(50)	ppm				11111111111	111111111111111111111111111111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	212	(175)	ppm	1111111111			11111111111) 11		0 lbs K20/1000sqft
Calcium	17,397	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	395	(50)	ppm	11111111111						0 lbs Mg/1000sgft
Sulfur	81	(13)	ppm		11111111111			111111111111	IIII	0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
Iron								i		
Zinc								l		
Manganese										
Copper								i		
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel in the maint w								\		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483872 Customer Sample ID: 746 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	260	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	25	(-)	ppm**	11111111111						0.2 lbs N/1000sqft
Phosphorus	71	(50)	ppm	11111111111		11111111111		111111		0 lbs P2O5/1000sqft
Potassium	291	(175)	ppm	11111111111				111111		0 lbs K20/1000sqft
Calcium	14,238	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	268	(50)	ppm	11111111111				111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
ron										
Zinc										
Manganese							i			
Copper										
Boron										
imestone Requirement				•						0.00 lbs/1000sqft
CL -Critical layed is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483873 Customer Sample ID: 747 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	1,160	(-)	umho/cm	Moderate	•		CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	9	(50)	ppm	11111111111						3.2 lbs P2O5/1000sqft
Potassium	296	(175)	ppm	11111111111				111111		0 lbs K20/1000sqft
Calcium	11,732	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	568	(50)	ppm					///////////////////////////////////////	II	0 lbs Mg/1000sgft
Sulfur	173	(13)	ppm	11111111111				111111111111	111111111	0 lbs S/1000sqft
Sodium	259	(-)	ppm	11111111111		Ш				
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483874
Customer Sample ID: 748
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	326	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	473	(50)	ppm	11111111111						0 lbs P2O5/1000sqft
Potassium	952	(175)	ppm	11111111111			11111111111	mmi	ı	0 lbs K20/1000sqft
Calcium	12,698	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	420	(50)	ppm					mmi		0 lbs Mg/1000sgft
Sulfur	68	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111	I .	0 lbs S/1000sqft
Sodium	135	(-)	ppm	11111111111		I				
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
·		•		•						

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483875
Customer Sample ID: 749
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN										
Results	CL*	Units	ExLow \	VLow	Low	Mod	High	VHigh	Excess.	
8.1	(6.5)	-	Mod. Alkali	ne						
258	(-)	umho/cm	None			CI	*		Fertilizer Recommended	
10	(-)	ppm**	11111111111						0.9 lbs N/1000sqft	
116	(50)	ppm						I	0 lbs P2O5/1000sqft	
331	(175)	ppm		11111111			111111		0 lbs K20/1000sqft	
18,951	(180)	ppm						ı	0 lbs Ca/1000sqft	
258	(50)	ppm					111111		0 lbs Mg/1000sgft	
56	(13)	ppm	111111111111111111111111111111111111111				11111111111	ı	0 lbs S/1000sqft	
48	(-)	ppm	1111111111							
						ı				
						i				
						,				
									0.00 lbs/1000sqft	
	8.1 258 10 116 331 18,951 258 56	Results CL* 8.1 (6.5) 258 (-) 10 (-) 116 (50) 331 (175) 18,951 (180) 258 (50) 56 (13)	Results CL* Units 8.1 (6.5) - 258 (-) umho/cm 10 (-) ppm** 116 (50) ppm 331 (175) ppm 18,951 (180) ppm 258 (50) ppm 56 (13) ppm	Results CL* Units ExLow 8.1 (6.5) - Mod. Alkali 258 (-) umho/cm None 10 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 8.1 (6.5) - Mod. Alkaline None 258 (-) umho/cm None None <td r<="" td=""><td> Results CL* Units</td><td> Results CL* Units ExLow VLow Low Mod High </td><td> Results CL* Units ExLow VLow Low Mod High VHigh </td></td>	<td> Results CL* Units</td> <td> Results CL* Units ExLow VLow Low Mod High </td> <td> Results CL* Units ExLow VLow Low Mod High VHigh </td>	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483876 Customer Sample ID: 750 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	402	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	28	(50)	ppm	11111111111	111111111111		ı ¦			1.7 lbs P2O5/1000sqft
Potassium	716	(175)	ppm	11111111111	111111111111		шш		II	0 lbs K20/1000sqft
Calcium	10,434	(180)	ppm	11111111111	111111111111	IIIIIIIIII			II	0 lbs Ca/1000sqft
Magnesium	185	(50)	ppm		111111111111		mmi	IIIII		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	11111111111			шш	ll .		0 lbs S/1000sqft
Sodium	15	(-)	ppm	ll l						
Iron							l l			
Zinc							l I			
Manganese							į.			
Copper							i			
Boron							I I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483907 Customer Sample ID: 751 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.2	(6.5)	-	Slightly Alkaline
Conductivity	293	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	51	(-)	ppm**	
Phosphorus	433	(50)	ppm	1111111111111111111111111111111111111
Potassium	310	(175)	ppm	
Calcium	9,323	(180)	ppm	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Magnesium	434	(50)	ppm	
Sulfur	171	(13)	ppm	
Sodium	30	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
CL Critical layed in the point w	hich no add	itional nu	triont (ovelue	uding nitrate-N, sodium and conductivity) is recommended **nnm-mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483877
Customer Sample ID: 752
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		01 #								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alka	line					
Conductivity	296	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	34	(-)	ppm**		:					0 lbs N/1000sqft
Phosphorus	146	(50)	ppm				шшш		II	0 lbs P2O5/1000sqft
Potassium	244	(175)	ppm)III		0 lbs K20/1000sqft
Calcium	9,980	(180)	ppm		:					0 lbs Ca/1000sqft
/lagnesium	439	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	36	(13)	ppm					111111111		0 lbs S/1000sqft
Sodium	28	(-)	ppm	IIIIII						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483878 Customer Sample ID: 753 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	1,580	(-)	umho/cm	High			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	5	(50)	ppm							3.5 lbs P2O5/1000sqft
Potassium	314	(175)	ppm	11111111111	111111111111		11111111111	1111111		0 lbs K20/1000sqft
Calcium	10,993	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	680	(50)	ppm		111111111111	IIIIIIIIII	111111111111		II	0 lbs Mg/1000sgft
Sulfur	275	(13)	ppm	11111111111			111111111111		11111111111	0 lbs S/1000sqft
Sodium	412	(-)	ppm		1111111111111	ШШШ	1			
Iron										
Zinc										
Manganese										
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483879
Customer Sample ID: 754
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN	CI *	Unite	Evlaw	VI ou	Low	Mod	Lliab	VHiah	Excess.	
		-			LOW	WOU	nigil	vnign	LAUGSS.	
		umho/cm		uille		21			Fertilizer Recommended	
						CI			1.1 lbs N/1000sqft	
							111		0 lbs P2O5/1000sqft	
									0 lbs K20/1000sqft	
	-							II	0 lbs Ca/1000sqft	
	` '		: :						0 lbs Mg/1000sgft	
	. ,								0 lbs S/1000sqft	
26			IIIIII						- 1.50 G/ 1.0000q.t	
	()									
							:	:	0.00 lbs/1000sqft	
									·	
	8.3 176 6 63 299 17,950 311 27	Results CL* 8.3 (6.5) 176 (-) 6 (-) 63 (50) 299 (175) 17,950 (180) 311 (50) 27 (13)	Results CL* Units 8.3 (6.5) - 176 (-) umho/cm 6 (-) ppm** 63 (50) ppm 299 (175) ppm 17,950 (180) ppm 311 (50) ppm 27 (13) ppm	Results CL* Units ExLow 8.3 (6.5) - Mod. Alk 176 (-) umho/cm None 6 (-) ppm*** IIIIII 63 (50) ppm IIIIIIIIIII 299 (175) ppm IIIIIIIIIIII 17,950 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 8.3 (6.5) - Mod. Alkaline 176 (-) umho/cm None 6 (-) ppm** IIIIII 63 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low 8.3 (6.5) - Mod. Alkaline None 6 (-) umho/cm None None <td row<="" td=""><td>Results CL* Units ExLow VLow Low Mod 8.3 (6.5) - Mod. Alkaline - Color - Color - Color - Color - Color -<td> Results CL* Units ExLow VLow Low Mod High </td><td> Results CL* Units ExLow VLow Low Mod High VHigh </td></td></td>	<td>Results CL* Units ExLow VLow Low Mod 8.3 (6.5) - Mod. Alkaline - Color - Color - Color - Color - Color -<td> Results CL* Units ExLow VLow Low Mod High </td><td> Results CL* Units ExLow VLow Low Mod High VHigh </td></td>	Results CL* Units ExLow VLow Low Mod 8.3 (6.5) - Mod. Alkaline - Color - Color - Color - Color - Color - <td> Results CL* Units ExLow VLow Low Mod High </td> <td> Results CL* Units ExLow VLow Low Mod High VHigh </td>	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483946
Customer Sample ID: 755
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly /	Alkaline					
Conductivity	228	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	352	(50)	ppm				11111111111		Ш	0 lbs P2O5/1000sqft
Potassium	345	(175)	ppm	11111111111			1000000			0 lbs K20/1000sqft
Calcium	7,039	(180)	ppm	11111111111			111111111111		I	0 lbs Ca/1000sqft
Magnesium	770	(50)	ppm				111111111111	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	I	0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm	111111111111			11111111111			0 lbs S/1000sqft
Sodium	343	(-)	ppm			IIIIIIII				
Iron								l		
Zinc							!			
Manganese							į			
Copper							i			
Boron							!			
Limestone Requirement										0.00 lbs/1000sqft
*CL -Critical lovel is the point w					N.I.					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483948 Customer Sample ID: 756 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
эН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	263	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	83	(50)	ppm	11111111111		IIIIIIIIII		111111111		0 lbs P2O5/1000sqft
Potassium	394	(175)	ppm	11111111111		IIIIIIIIII		וווווווווווון		0 lbs K20/1000sqft
Calcium	18,902	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	508	(50)	ppm	11111111111		IIIIIIIIII			II .	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	11111111111		IIIIIIIIII		111111111		0 lbs S/1000sqft
Sodium	357	(-)	ppm			ШШ				
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484096
Customer Sample ID: 757
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		CL*	l ln:to							_
Analysis	Results		Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	242	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	76	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	234	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	18,745	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	279	(50)	ppm				11111111111	111111		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	11111111111			11111111111	111111		0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper										
Boron							ľ			
imestone Requirement				·						0.00 lbs/1000sqft
<u>-</u>										
CL -Critical layed is the point w						_				

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483949
Customer Sample ID: 758
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	393	(-)	umho/cm	None		CL	•		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**	111111111111111111111111111111111111111	III				0.6 lbs N/1000sqft
Phosphorus	118	(50)	ppm						0 lbs P2O5/1000sqft
Potassium	528	(175)	ppm	111111111111111111111111111111111111111	IIIIIIIIII	mmm	шші		0 lbs K20/1000sqft
Calcium	14,863	(180)	ppm	111111111111111111111111111111111111111				l	0 lbs Ca/1000sqft
Magnesium	395	(50)	ppm			111111111111111111111111111111111111111	ШШШ		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm			111111111111111111111111111111111111111	Ш		0 lbs S/1000sqft
Sodium	330	(-)	ppm		IIIIIIII				
Iron						¦			
Zinc						<u> </u>			
Manganese									
Copper						i			
Boron						ł			
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483950
Customer Sample ID: 759
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	246	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	278	(50)	ppm				111111111111111111111111111111111111111		Ш	0 lbs P2O5/1000sqft
Potassium	236	(175)	ppm	11111111111		1111111111	111111111111)II		0 lbs K20/1000sqft
Calcium	13,225	(180)	ppm	11111111111	11111111111		111111111111	(11111111111111111111111111111111111111	I	0 lbs Ca/1000sqft
Magnesium	362	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	67	(13)	ppm	11111111111	11111111111	11111111111	111111111111	111111111111	l l	0 lbs S/1000sqft
Sodium	329	(-)	ppm	11111111111		IIIIIII				
Iron										
Zinc										
Manganese										
Copper							l			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
*CL -Critical level is the point w	املم مصطمئط	itional nu	triant (avalua	lina nitrat	o NI 004	dium on	d oond	otivity) i	rocom	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483951
Customer Sample ID: 760
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	666	(-)	umho/cm	Slight			CI	*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	720	(50)	ppm	11111111111			111111111111		ШШ	0 lbs P2O5/1000sqft
Potassium	429	(175)	ppm	11111111111			111111111111	himmi		0 lbs K20/1000sqft
Calcium	6,014	(180)	ppm			•	:	. :		0 lbs Ca/1000sqft
Magnesium	527	(50)	ppm	11111111111						0 lbs Mg/1000sgft
Sulfur	329	(13)	ppm	11111111111			111111111111	1111111111	1111111111	0 lbs S/1000sqft
Sodium	64	(-)	ppm	11111111111	III					
Iron										
Zinc										
Manganese										
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical level is the point w		100			N.I.	i.		v		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483908
Customer Sample ID: 761
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	128	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**		Ш					0.8 lbs N/1000sqft
Phosphorus	179	(50)	ppm					111111111111	III	0 lbs P2O5/1000sqft
Potassium	160	(175)	ppm	11111111111						0.3 lbs K20/1000sqft
Calcium	4,625	(180)	ppm	11111111111				11111		0 lbs Ca/1000sqft
Magnesium	123	(50)	ppm					Ш		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111				Ш		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
C. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483909
Customer Sample ID: 762
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow \	/Low	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alkali	ne					
Conductivity	192	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	12	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	158	(50)	ppm						II	0 lbs P2O5/1000sqft
Potassium	350	(175)	ppm							0 lbs K20/1000sqft
Calcium	5,725	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	244	(50)	ppm		ШШ			Ш		0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm		ШШ					0 lbs S/1000sqft
Sodium	27	(-)	ppm	IIIIII						
ron										
linc										
/langanese							į			
Copper							i			
Boron							l I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483952
Customer Sample ID: 763
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.7	(6.5)	-	Mod. Alka	aline					
Conductivity	356	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	74	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	243	(50)	ppm				11111111111		IIII	0 lbs P2O5/1000sqft
Potassium	334	(175)	ppm	1111111111111	1111111111		11111111111			0 lbs K20/1000sqft
Calcium	14,674	(180)	ppm	1111111111111						0 lbs Ca/1000sqft
Magnesium	419	(50)	ppm					mmi	l l	0 lbs Mg/1000sgft
Sulfur	36	(13)	ppm							0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
ron								İ		
Zinc										
Manganese							i			
Copper							i			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
CL —Critical lovel is the point w		100			N.	ı.		v		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483910 Customer Sample ID: 764 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	202	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	70	(50)	ppm					11111		0 lbs P2O5/1000sqft
Potassium	306	(175)	ppm	11111111111				1111111		0 lbs K20/1000sqft
Calcium	26,890	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	297	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	341	(-)	ppm	11111111111		IIIIIIII				
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483880
Customer Sample ID: 765
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	338	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	III						1.2 lbs N/1000sqft
Phosphorus	62	(50)	ppm				ļ	III		0 lbs P2O5/1000sqft
Potassium	593	(175)	ppm	11111111111	111111111111			mmi	I	0 lbs K20/1000sqft
Calcium	12,424	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	420	(50)	ppm	11111111111	111111111111			mmi		0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	11111111111				IIIIII		0 lbs S/1000sqft
Sodium	43	(-)	ppm	11111111						
ron										
Zinc										
Manganese										
Copper							;			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483911
Customer Sample ID: 766
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	233	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	72	(50)	ppm			IIIIIIIIIII	шшш	111111		0 lbs P2O5/1000sqft
Potassium	262	(175)	ppm	11111111111		IIIIIIIIII	11111111111	IIIII		0 lbs K20/1000sqft
Calcium	17,413	(180)	ppm				: .		II	0 lbs Ca/1000sqft
/lagnesium	350	(50)	ppm			IIIIIIIIIII	111111111111			0 lbs Mg/1000sgft
Sulfur	41	(13)	ppm			IIIIIIIIIII	11111111111			0 lbs S/1000sqft
Sodium	343	(-)	ppm	11111111111		ШШ				
ron								İ		
Zinc										
Manganese							į			
Copper							i			
Boron										
imestone Requirement				·					·	0.00 lbs/1000sqft
CL —Critical lovel is the point w								\ .		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483881
Customer Sample ID: 767
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	232	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
litrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
hosphorus	29	(50)	ppm	11111111111	1111111111111		l			1.6 lbs P2O5/1000sqft
otassium	305	(175)	ppm	1111111111	1111111111111			1111111		0 lbs K20/1000sqft
Calcium	17,609	(180)	ppm	11111111111	111111111111			(((((((((((((((((((((((((((((((((((((((II	0 lbs Ca/1000sqft
/lagnesium	270	(50)	ppm	11111111111	111111111111			111111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
ron										
Zinc Zinc								l		
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the maint w					-					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483912 Customer Sample ID: 768 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рΗ	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	216	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**			Ш				0.6 lbs N/1000sqft
Phosphorus	70	(50)	ppm					111111		0 lbs P2O5/1000sqft
Potassium	223	(175)	ppm	11111111111				11		0 lbs K20/1000sqft
Calcium	10,829	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	463	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	336	(-)	ppm	11111111111		IIIIIIII				
ron										
Zinc								l		
Manganese										
Copper										
Boron							ا			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483882
Customer Sample ID: 769
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
οH	7.6	(6.5)	-	Slightly A	Alkaline					
Conductivity	306	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**		1111111111	IIII				0.4 lbs N/1000sqft
Phosphorus	291	(50)	ppm	111111111111				mmmi	Ш	0 lbs P2O5/1000sqft
Potassium	461	(175)	ppm	111111111111						0 lbs K20/1000sqft
Calcium	6,711	(180)	ppm	111111111111						0 lbs Ca/1000sqft
Magnesium	665	(50)	ppm					mmi	I .	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	111111111111			!!!!!!!!!!!			0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
ron										
Zinc Zinc										
Manganese										
Copper							i			
Boron							l I			
imestone Requirement										0.00 lbs/1000sqft
CI - Critical lovel is the point w	لواو و او و او او او او	itional mu		ll	NI		المستمال	-41. da A 1		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Austin, TX 78767

Travis County

Laboratory Number: 483953
Customer Sample ID: 770
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.2	(6.5)	-	Slightly Alkaline
Conductivity	1,070	(-)	umho/cm	Moderate CL* Fertilizer Recommended
Nitrate-N	234	(-)	ppm**	
Phosphorus	153	(50)	ppm	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Potassium	426	(175)	ppm	
Calcium	11,101	(180)	ppm	
Magnesium	389	(50)	ppm	
Sulfur	38	(13)	ppm	
Sodium	49	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding nitrate-N sodium and conductivity) is recommended **ppm=mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483954
Customer Sample ID: 771
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkaline					
Conductivity	171	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111					1 lbs N/1000sqft
Phosphorus	506	(50)	ppm		IIIIIII	mmuni	IIIIIIII	IIIIIII	0 lbs P2O5/1000sqft
Potassium	174	(175)	ppm		ШШ	шшш			0 lbs K20/1000sqft
Calcium	11,202	(180)	ppm				:	:	0 lbs Ca/1000sqft
Magnesium	595	(50)	ppm		IIIIIII	111111111111111111111111111111111111111	IIIIIIIII	II .	0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm		ШШ				0 lbs S/1000sqft
Sodium	21	(-)	ppm	IIII					
Iron						i	İ		
Zinc									
Manganese						į			
Copper						i			
Boron						!			
Limestone Requirement									0.00 lbs/1000sqft
*CL -Critical level is the point w	high no odd	itional nu	triont (ovolue	ing pitrate N. codiu	m 0n	d condu	otivity) i	rocomr	nandad **nam ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483955
Customer Sample ID: 772
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

7.9 391 24 167 584 9,438 340	(6.5) (-) (-) (50) (175) (180)	umho/cm ppm** ppm	Mod. Alk None		Low	Mod CL	High	VHigh	Fertilizer Recommended
391 24 167 584 9,438	(-) (-) (50) (175)	ppm** ppm	None 				*		Fertilizer Recommended
24 167 584 9,438	(-) (50) (175)	ppm** ppm					.*		Fertilizer Recommended
167 <mark>584</mark> 9,438	(50) (175)	ppm							
584 9,438	(175)								0.2 lbs N/1000sqft
9,438	' '	nnm			11111111111			II	0 lbs P2O5/1000sqft
	(180)	ppm	11111111111			mmmi,	mmi	ı	0 lbs K20/1000sqft
340	(100)	ppm	11111111111		: :			I	0 lbs Ca/1000sqft
	(50)	ppm			11111111111			İ	0 lbs Mg/1000sgft
20	(13)	ppm					IIIII		0 lbs S/1000sqft
16	(-)	ppm	Ш						
						į			
						i			
						l I			
			·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483956
Customer Sample ID: 773
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	396	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**	11111111111		IIIIII				0.4 lbs N/1000sqft
Phosphorus	236	(50)	ppm	11111111111			11111111111		Ш	0 lbs P2O5/1000sqft
Potassium	528	(175)	ppm	11111111111			11111111111) III III III III (l	0 lbs K20/1000sqft
Calcium	9,199	(180)	ppm	11111111111			: ,			0 lbs Ca/1000sqft
/lagnesium	460	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm	11111111111			11111111111	1111111		0 lbs S/1000sqft
Sodium	40	(-)	ppm	1111111						
ron										
linc										
Manganese										
Copper										
Boron							,			
imestone Requirement				·				·		0.00 lbs/1000sqft
*CL -Critical layed is the point w	high no add	itional nu	triont (ovolue	lina nitrat	N soc	dium an	d condi	otivity) i	rocom	mandad **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483957
Customer Sample ID: 775
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O1 #								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	206	(-)	umho/cm	None			. CI	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	201	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	250	(175)	ppm	11111111111			11111111111	ווון		0 lbs K20/1000sqft
Calcium	6,791	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	358	(50)	ppm	11111111111			111111111111	111111111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm				11111111111	11111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
-										
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483958
Customer Sample ID: 776
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.3	(6.5)	-	Mod. All	kaline					
Conductivity	172	(-)	umho/cm	None			. с	<u>.</u> *		Fertilizer Recommended
litrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
hosphorus	18	(50)	ppm			IIIIIII				2.5 lbs P2O5/1000sqft
Potassium	133	(175)	ppm	11111111111	111111111111	ШШШ	111111			0.9 lbs K20/1000sqft
Calcium	8,972	(180)	ppm	11111111111	111111111111		11111111111	(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	316	(50)	ppm	11111111111		IIIIIIIIII		1111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111	1111111111111		11111111111	111111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
C. Critical layed in the maint										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483959
Customer Sample ID: 778
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

7.9 265 4 166 379 5,932 562 18	(6.5) (-) (-) (50) (175) (180) (50)	umho/cm ppm** ppm ppm ppm				Mod CI		VHigh	Fertilizer Recommended 1.2 lbs N/1000sqft
265 4 166 379 5,932 562 18	(-) (50) (175) (180) (50)	umho/cm ppm** ppm ppm ppm	None III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						
4 166 379 5,932 562 18	(-) (50) (175) (180) (50)	ppm** ppm ppm ppm							
166 379 5,932 562 18	(50) (175) (180) (50)	ppm ppm ppm	 						1.2 lbs N/1000sqft
379 5,932 562 18	(175) (180) (50)	ppm ppm							
5,932 562 18	(180) (50)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IIIIIIIIIIIII	II .	0 lbs P2O5/1000sqft
562 18	(50)		11111111111		11111111111				0 lbs K20/1000sqft
18		10 to 100		111111111111					0 lbs Ca/1000sqft
		ppm	1111111111				mmi	ı	0 lbs Mg/1000sgft
33	(13)	ppm	1111111111	111111111111		11111111111	Ш		0 lbs S/1000sqft
00	(-)	ppm	ШШ						
						i			
									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483913 Customer Sample ID: 779 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	333	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	75	(50)	ppm				11111111111			0 lbs P2O5/1000sqft
Potassium	397	(175)	ppm	111111111111	11111111111		11111111111	1111111111		0 lbs K20/1000sqft
Calcium	13,566	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	424	(50)	ppm		11111111111			mmi	l i	0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm	111111111111	11111111111		11111111111	II .		0 lbs S/1000sqft
Sodium	338	(-)	ppm		11111111111	IIIIIIII				
ron								İ		
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483960 Customer Sample ID: 780 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	298	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	11111111111	IIII					0.8 lbs N/1000sqft
Phosphorus	379	(50)	ppm					111111111111	111111	0 lbs P2O5/1000sqft
Potassium	347	(175)	ppm	11111111111				11111111111		0 lbs K20/1000sqft
Calcium	10,248	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	570	(50)	ppm					///////////////////////////////////////	II	0 lbs Mg/1000sgft
Sulfur	75	(13)	ppm	111111111111				111111111111	III	0 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111						
ron										
Zinc										
Manganese							į			
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483961 781 Customer Sample ID:

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	6.3	(6.5)	-	Slightly	Acid					
Conductivity	92	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	29	(50)	ppm				ı ¦			1.6 lbs P2O5/1000sqft
Potassium	91	(175)	ppm	11111111111						1.9 lbs K20/1000sqft
Calcium	836	(180)	ppm	11111111111				II		0 lbs Ca/1000sqft
Magnesium	91	(50)	ppm				mmi	II [0 lbs Mg/1000sgft
Sulfur	7	(13)	ppm	11111111111			l			0.5 lbs S/1000sqft
Sodium	8	(-)	ppm	ı						
Iron							l l	İ		
Zinc							ļ.			
Manganese							į			
Copper							i			
Boron							I I			
Limestone Requirement										10.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483883
Customer Sample ID: 785
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	288	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Phosphorus	208	(50)	ppm	- IIIIIIIIIII			11111111111	mmi	Ш	0 lbs P2O5/1000sqft
Potassium	410	(175)	ppm				11111111111	mmi	ı	0 lbs K20/1000sqft
Calcium	12,061	(180)	ppm			•	: .			0 lbs Ca/1000sqft
Magnesium	472	(50)	ppm				11111111111	шшш	١	0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm	11111111111			11111111111	111111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
ron										
Zinc										
Manganese							į			
Copper							i			
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft
CI - Critical lovel is the point w		! t! 1	4ml = m 4 / = = l		N.I.	ı.		-4114. A 1.		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483914
Customer Sample ID: 786
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G					
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.	
οH	7.6	(6.5)	-	Slightly Alkaline	
Conductivity	343	(-)	umho/cm	None CL* Fertilizer Recomm	ended
Nitrate-N	49	(-)	ppm**		qft
Phosphorus	587	(50)	ppm		00sqft
Potassium	608	(175)	ppm)sqft
Calcium	8,287	(180)	ppm		sqft
/lagnesium	876	(50)	ppm		sgft
Sulfur	35	(13)	ppm		qft
Sodium	338	(-)	ppm		
ron					
Zinc					
Manganese					
Copper					
Boron					
imestone Requirement				0.00 lbs/1000sqft	
0. 0.0. 1. 1. 1. 1.		:4: I		ling nitrate N codium and conductivity) is recommended **nnm-mg/kg	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483915 Customer Sample ID: 787 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.6	(6.5)	-	Mod. Alk	caline					
Conductivity	102	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
hosphorus	2	(50)	ppm	Ш						3.8 lbs P2O5/1000sqft
otassium	176	(175)	ppm	11111111111	ШШШ	IIIIIIIIII)		0 lbs K20/1000sqft
Calcium	28,112	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
lagnesium	264	(50)	ppm		111111111111	IIIIIIIIII		111111		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm		111111111111	IIIIIIIIII	!!!!!!!!!!!	11111		0 lbs S/1000sqft
odium	337	(-)	ppm		1111111111111	ШШ				
ron										
inc										
/langanese							i			
Copper							i			
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483916
Customer Sample ID: 788
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	203	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	24	(-)	ppm**		1111111111					0.3 lbs N/1000sqft
Phosphorus	42	(50)	ppm	111111111111			IIIIII ;			0.6 lbs P2O5/1000sqft
Potassium	246	(175)	ppm	111111111111	HIIIIIII		mmm	Ш		0 lbs K20/1000sqft
Calcium	30,195	(180)	ppm	111111111111						0 lbs Ca/1000sqft
/lagnesium	487	(50)	ppm	111111111111			umani (0 lbs Mg/1000sgft
Sulfur	49	(13)	ppm	111111111111			шшф	mmi		0 lbs S/1000sqft
Sodium	337	(-)	ppm	111111111111	ШШЩ	IIIIIIII				
ron							¦			
linc							- !			
Manganese							į			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL —Critical lovel is the point w				P 24 4				\ ·		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483917
Customer Sample ID: 789
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	aline					
Conductivity	500	(-)	umho/cm	Slight			CL	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	63	(50)	ppm	1111111111111			ιιιιιιιιφ	II .		0 lbs P2O5/1000sqft
Potassium	295	(175)	ppm	1111111111111	1111111111	IIIIIIIIII	111111111111111111111111111111111111111	Ш		0 lbs K20/1000sqft
Calcium	21,362	(180)	ppm	1111111111111	1111111111		1111111111111	ШШЩ	II	0 lbs Ca/1000sqft
Magnesium	527	(50)	ppm		1111111111		111111111111111111111111111111111111111	ШШЩ	II	0 lbs Mg/1000sgft
Sulfur	292	(13)	ppm)	IIIIIIII		0 lbs S/1000sqft
Sodium	337	(-)	ppm		HIIIIIII	IIIIIIII				
Iron							¦			
Zinc							-			
Manganese							į			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483884
Customer Sample ID: 790
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	8.1	(6.5)	-	Mod. Alkaline
Conductivity	202	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	1	(-)	ppm**	1.4 lbs N/1000sqft
Phosphorus	151	(50)	ppm	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Potassium	298	(175)	ppm	
Calcium	14,487	(180)	ppm	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Magnesium	562	(50)	ppm	
Sulfur	29	(13)	ppm	
Sodium	28	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
CL Critical layed in the point w	high no add	itional nu	triant (avalua	uding nitrate-N sodium and conductivity) is recommended **nnm-mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483919
Customer Sample ID: 791
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	242	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**		II					0.8 lbs N/1000sqft
Phosphorus	227	(50)	ppm		1111111111		11111111111		Ш	0 lbs P2O5/1000sqft
Potassium	294	(175)	ppm	11111111111	11111111111		11111111111	IIIIII		0 lbs K20/1000sqft
Calcium	6,240	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	316	(50)	ppm		11111111111					0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	11111111111	11111111111		11111111111	IIIIIII		0 lbs S/1000sqft
Sodium	334	(-)	ppm	11111111111	11111111111	IIIIIIIII				
ron										
Zinc Zinc										
Manganese										
Copper										
Boron							,			
imestone Requirement				·				,		0.00 lbs/1000sqft
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483962
Customer Sample ID: 792
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.3	(6.5)	-	Mod. Al	kaline					
Conductivity	213	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	10	(50)	ppm	1111111111	111111111111					3.1 lbs P2O5/1000sqft
Potassium	233	(175)	ppm	1111111111	11111111111)111		0 lbs K20/1000sqft
Calcium	11,282	(180)	ppm		111111111111				II	0 lbs Ca/1000sqft
Magnesium	269	(50)	ppm	1111111111	111111111111			111111		0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm	1111111111	111111111111			111111		0 lbs S/1000sqft
Sodium	33	(-)	ppm	ШШ						
Iron								 		
Zinc								l		
Manganese										
Copper										
Boron							ا			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483920
Customer Sample ID: 793
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Al	kaline					
Conductivity	255	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	155	(50)	ppm	ШШШ			11111111111	mmi	II	0 lbs P2O5/1000sqft
Potassium	468	(175)	ppm	1111111111		1111111111		mmi	ı	0 lbs K20/1000sqft
Calcium	4,896	(180)	ppm		111111111111					0 lbs Ca/1000sqft
Magnesium	393	(50)	ppm	1111111111				1111111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	1111111111		1111111111	111111111111	11111		0 lbs S/1000sqft
Sodium	352	(-)	ppm	1111111111		11111111				
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483885
Customer Sample ID: 794
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	caline					
Conductivity	366	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	35	(50)	ppm				IIIII ;			1.2 lbs P2O5/1000sqft
Potassium	709	(175)	ppm							0 lbs K20/1000sqft
Calcium	11,219	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	241	(50)	ppm				111111111111	Ш		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm				11111111111	11111		0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron								l		
Zinc							-			
Manganese							į			
Copper							i			
Boron							1			
imestone Requirement								·		0.00 lbs/1000sqft
CL -Critical level is the point w						r.		\ .		1 1 44 /

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483886
Customer Sample ID: 795
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	393	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	76	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	54	(50)	ppm		1111111111		шшц	l		0 lbs P2O5/1000sqft
Potassium	322	(175)	ppm		11111111111	1111111111	mmm			0 lbs K20/1000sqft
Calcium	12,306	(180)	ppm	111111111111	11111111111	1111111111			II	0 lbs Ca/1000sqft
Magnesium	297	(50)	ppm		11111111111		mmi	IIIIII		0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm				шш			0 lbs S/1000sqft
Sodium	12	(-)	ppm	II I						
Iron							i			
Zinc							ļ.			
Manganese							į.			
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483887
Customer Sample ID: 797
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Mod. Alka	line					
Conductivity	372	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	641	(50)	ppm	11111111111111			11111111111		IIIIII	0 lbs P2O5/1000sqft
Potassium	456	(175)	ppm		ШШЩ			mmi	ı	0 lbs K20/1000sqft
Calcium	7,951	(180)	ppm	11111111111111	ШШШ		11111111111		l l	0 lbs Ca/1000sqft
Magnesium	665	(50)	ppm					mmi	II .	0 lbs Mg/1000sgft
Sulfur	78	(13)	ppm	11111111111111			11111111111	Maria	II	0 lbs S/1000sqft
Sodium	51	(-)	ppm	11111111111						
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron							ļ			
imestone Requirement								·		0.00 lbs/1000sqft
CL —Critical layed is the point w		141 1 · - · ·	tul t / l		NI		al a a a ala	-41, 34, 3 1		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483921
Customer Sample ID: 798
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkal	line					
Conductivity	488	(-)	umho/cm	Slight			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	65	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	483	(175)	ppm		ШШ		mmm	mmmķi		0 lbs K20/1000sqft
Calcium	14,448	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	628	(50)	ppm	11111111111111111			111111111111111111111111111111111111111	mmmi	ı	0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm				шш	Ш		0 lbs S/1000sqft
Sodium	336	(-)	ppm							
Iron							i			
Zinc										
Manganese										
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483922
Customer Sample ID: 799
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

T.8 (6.5 -	Crop Grown: G	ARDEN			
Conductivity	Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
Nitrate-N 12	рН	7.8	(6.5)	-	Mod. Alkaline
Phosphorus	Conductivity	476	(-)	umho/cm	Slight CL. Fertilizer Recommended
Potassium	Nitrate-N	12	(-)	ppm**	
Calcium 6,620 (180) ppm	Phosphorus	418	(50)	ppm	
Magnesium 825 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	1010	(175)	ppm	
Solitur	Calcium	6,620	(180)	ppm	
Sodium 400 (-) ppm	Magnesium	825	(50)	ppm	
ron Zinc Wanganese Copper Boron	Sulfur	137	(13)	ppm	
Zinc Manganese Copper Boron	Sodium	400	(-)	ppm	
Manganese Copper Boron	lron				
Copper Soron	Zinc				
Boron ¦	Manganese				
	Copper				
_imestone Requirement 0.00 lbs/1000sqft	Boron				
	Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483923
Customer Sample ID: 800
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH	8.0	(6.5)	Office	Mod. Alk		LOW	Wou	nigii	vnigii	Excess.
Conductivity	296	(-)	umho/cm	None	Valille		01			Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	IIIIIIIIII			Cl			1 lbs N/1000sqft
Phosphorus	52	(50)	ppm	11111111111		1111111111		1		0 lbs P2O5/1000sqft
Potassium	322	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	9,072	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	285	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	12	(13)	ppm	11111111111						0.25 lbs S/1000sqft
Sodium	337	(-)	ppm	11111111111						
Iron										
Zinc										
Manganese										
Copper							l l			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483888
Customer Sample ID: 802
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	303	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**	11111111111						0.7 lbs N/1000sqft
Phosphorus	147	(50)	ppm	11111111111			mm		I	0 lbs P2O5/1000sqft
Potassium	476	(175)	ppm	11111111111			mmm	mmmķ		0 lbs K20/1000sqft
Calcium	15,469	(180)	ppm	11111111111				HHHHH	I	0 lbs Ca/1000sqft
Magnesium	452	(50)	ppm	11111111111			111111111111111111111111111111111111111	HIIIIII		0 lbs Mg/1000sgft
Sulfur	51	(13)	ppm	11111111111				mmi	l l	0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron							ı			
Zinc							I			
V anganese							į			
Copper							i			
Boron							ŀ			
Limestone Requirement								•	•	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483890 Customer Sample ID: 803 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.6	(6.5)	-	Mod. Alk	aline					
Conductivity	230	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	129	(50)	ppm			IIIIIIIIII		11111111111	I	0 lbs P2O5/1000sqft
Potassium	130	(175)	ppm	11111111111	11111111111		111111			1 lbs K20/1000sqft
Calcium	6,934	(180)	ppm	11111111111	:					0 lbs Ca/1000sqft
Magnesium	447	(50)	ppm		11111111111	IIIIIIIIII			l	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	11111111111	11111111111			111111		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
ron										
Zinc								·		
Manganese							i			
Copper							i			
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483924 Customer Sample ID: 805 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	242	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	15	(-)	ppm**	
Phosphorus	225	(50)	ppm	
Potassium	381	(175)	ppm	
Calcium	11,295	(180)	ppm	
Magnesium	506	(50)	ppm	
Sulfur	39	(13)	ppm	
Sodium	336	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				all a contract N and in a contract of the cont

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483925 Customer Sample ID: 806 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	196	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	180	(50)	ppm	11111111111		IIIIIIIIII		111111111111	III	0 lbs P2O5/1000sqft
Potassium	323	(175)	ppm	11111111111				1111111		0 lbs K20/1000sqft
Calcium	10,126	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	394	(50)	ppm			IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	331	(-)	ppm	11111111111		ШШ				
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483926 Customer Sample ID: 807 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	242	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	221	(50)	ppm	111111111111			,,,,,,,,,,,,,,,		Ш	0 lbs P2O5/1000sqft
Potassium	480	(175)	ppm					mmmi	l	0 lbs K20/1000sqft
Calcium	13,056	(180)	ppm	11111111111			11111111111	(I	I	0 lbs Ca/1000sqft
/lagnesium	539	(50)	ppm	111111111111				mmi	I	0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm	11111111111			11111111111	1111111111		0 lbs S/1000sqft
Sodium	335	(-)	ppm	11111111111		IIIIIIII				
ron										
Zinc Zinc										
Manganese										
Copper							l			
Boron							¦			
imestone Requirement								•		0.00 lbs/1000sqft
<u>-</u>										
C. Critical laval is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483927 Customer Sample ID: 808 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH.	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	268	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	141	(50)	ppm	11111111111				mmmi	l	0 lbs P2O5/1000sqft
Potassium	620	(175)	ppm	11111111111				mmi	I	0 lbs K20/1000sqft
Calcium	14,061	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	486	(50)	ppm			IIIIIIIIII		mmi		0 lbs Mg/1000sgft
Sulfur	66	(13)	ppm	11111111111				mmi	I	0 lbs S/1000sqft
Sodium	343	(-)	ppm	11111111111		ШШ				
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement				·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483984 Customer Sample ID: 815 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	382	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	512	(50)	ppm	11111111111			11111111111	111111111111		0 lbs P2O5/1000sqft
Potassium	658	(175)	ppm	11111111111	111111111111			111111111111111111111111111111111111111	II	0 lbs K20/1000sqft
Calcium	20,380	(180)	ppm	11111111111			11111111111	(111111111111	II	0 lbs Ca/1000sqft
Magnesium	545	(50)	ppm					///////////////////////////////////////	II	0 lbs Mg/1000sgft
Sulfur	266	(13)	ppm	11111111111			11111111111	111111111111		0 lbs S/1000sqft
Sodium	73	(-)	ppm		11111					
ron										
Zinc										
V anganese							i			
Copper							ľ			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft
CL Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484025
Customer Sample ID: 816
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	396	(-)	umho/cm	None			CL	* .		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	184	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	1197	(175)	ppm							0 lbs K20/1000sqft
Calcium	7,345	(180)	ppm				: .			0 lbs Ca/1000sqft
Magnesium	454	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	53	(13)	ppm						I	0 lbs S/1000sqft
Sodium	105	(-)	ppm							
ron										
Zinc							ļ			
Manganese							į			
Copper							i			
Boron							!			
imestone Requirement										0.00 lbs/1000sqft
CL_Critical lovel is the point w	المام ما ما ما ما	:::: I		li	N.	ı.		(* '(\ \ '		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483985
Customer Sample ID: 817
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.7	(6.5)	-	Mod. Alka	line					
Conductivity	344	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	90	(-)	ppm**		:		:			0 lbs N/1000sqft
Phosphorus	121	(50)	ppm				шшш	IIIIIIIIIIIIII	I	0 lbs P2O5/1000sqft
Potassium	234	(175)	ppm			IIIIIIIIII	mmm	Ш		0 lbs K20/1000sqft
Calcium	19,328	(180)	ppm						I	0 lbs Ca/1000sqft
/lagnesium	450	(50)	ppm					HHHHH	l	0 lbs Mg/1000sgft
Sulfur	79	(13)	ppm	11111111111111111				mmi	Ш	0 lbs S/1000sqft
Sodium	19	(-)	ppm	III						
ron							ı			
linc							ļ			
/langanese										
Copper										
Boron							I			
imestone Requirement							-			0.00 lbs/1000sqft
•										·
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483986
Customer Sample ID: 818
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	215	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	151	(50)	ppm	11111111111			11111111111	mmmi	II	0 lbs P2O5/1000sqft
Potassium	260	(175)	ppm	11111111111			11111111111	IIIII		0 lbs K20/1000sqft
Calcium	6,703	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	457	(50)	ppm	11111111111			111111111111	mmi	l	0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111			11111111111	III		0 lbs S/1000sqft
Sodium	50	(-)	ppm	11111111111						
Iron							l l			
Zinc										
Manganese							į			
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484026
Customer Sample ID: 819
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	452	(-)	umho/cm	None	_	CL	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	111111111111					0.9 lbs N/1000sqft
Phosphorus	140	(50)	ppm			111111111111111111111111111111111111111	mmmi	I	0 lbs P2O5/1000sqft
Potassium	796	(175)	ppm		ļiiiiiiiii		mmmķ	ı	0 lbs K20/1000sqft
Calcium	15,121	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	450	(50)	ppm				mmi		0 lbs Mg/1000sgft
Sulfur	160	(13)	ppm				mmi		0 lbs S/1000sqft
Sodium	115	(-)	ppm		II				
ron									
Zinc									
Manganese						į			
Copper						i			
Boron									
imestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483987
Customer Sample ID: 820
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN			
Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
7.4	(6.5)	-	Slightly Alkaline
330	(-)	umho/cm	None CL* Fertilizer Recommended
39	(-)	ppm**	
123	(50)	ppm	
408	(175)	ppm	
4,894	(180)	ppm	
488	(50)	ppm	
18	(13)	ppm	
56	(-)	ppm	
			0.00 lbs/1000sqft
	7.4 330 39 123 408 4,894 488 18	Results CL* 7.4 (6.5) 330 (-) 39 (-) 123 (50) 408 (175) 4,894 (180) 488 (50) 18 (13)	Results CL* Units 7.4 (6.5) - 330 (-) umho/cm 39 (-) ppm** 123 (50) ppm 408 (175) ppm 4,894 (180) ppm 488 (50) ppm 18 (13) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484027 Customer Sample ID: 821 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
эН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	443	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	102	(50)	ppm	111111111111			11111111111	11111111111	II	0 lbs P2O5/1000sqft
Potassium	981	(175)	ppm	11111111111			11111111111	mmi	II	0 lbs K20/1000sqft
Calcium	14,053	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	390	(50)	ppm					1111111111		0 lbs Mg/1000sgft
Sulfur	88	(13)	ppm	11111111111			11111111111		Ш	0 lbs S/1000sqft
Sodium	116	(-)	ppm	11111111111		I				
ron										
Zinc										
Manganese										
Copper										
Boron							,			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483988
Customer Sample ID: 822
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

7.5 318 32	(6.5) (-)	Units	ExLow Slightly	VLow	Low	Mod	High	VHigh	Excess.
318			Slightly	Alkalina					
	(-)			Aikaiiiie	!				
32		umho/cm	None			С	L*		Fertilizer Recommended
	(-)	ppm**	11111111111			11111			0 lbs N/1000sqft
153	(50)	ppm		111111111111				II	0 lbs P2O5/1000sqft
453	(175)	ppm		111111111111		111111111111	ļuuniķi		0 lbs K20/1000sqft
12,386	(180)	ppm							0 lbs Ca/1000sqft
489	(50)	ppm				111111111111			0 lbs Mg/1000sgft
33	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
43	(-)	ppm	11111111						
							!		
									0.00 lbs/1000sqft
	153 453 12,386 489 33 43	153 (50) 453 (175) 12,386 (180) 489 (50) 33 (13) 43 (-)	153 (50) ppm 453 (175) ppm 12,386 (180) ppm 489 (50) ppm 33 (13) ppm 43 (-) ppm	153 (50) ppm	153 (50) ppm	153 (50) ppm	153 (50) ppm	153 (50) ppm	153 (50) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483963
Customer Sample ID: 823
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow \	VLow	Low	Mod	High	VHigh	Excess.
8.1	(6.5)	-	Mod. Alkalii	ne					
448	(-)	umho/cm	None			CI	*		Fertilizer Recommended
18	(-)	ppm**	111111111111111111111111111111111111111	ШШ	II				0.6 lbs N/1000sqft
24	(50)	ppm				l			2 lbs P2O5/1000sqft
431	(175)	ppm		ШШ	111111111		mmmi	l	0 lbs K20/1000sqft
14,725	(180)	ppm						II	0 lbs Ca/1000sqft
315	(50)	ppm		ШШ	1111111111				0 lbs Mg/1000sgft
35	(13)	ppm			1111111111				0 lbs S/1000sqft
37	(-)	ppm	1111111						
							İ		
						į			
						i			
						, ,			
									0.00 lbs/1000sqft
	8.1 448 18 24 431 14,725 315 35	Results CL* 8.1 (6.5) 448 (-) 18 (-) 24 (50) 431 (175) 14,725 (180) 315 (50) 35 (13)	Results CL* Units 8.1 (6.5) - 448 (-) umho/cm 18 (-) ppm** 24 (50) ppm 431 (175) ppm 14,725 (180) ppm 315 (50) ppm 35 (13) ppm	Results CL* Units ExLow Mod. Alkali 448 (-) umho/cm None 18 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 8.1 (6.5) - Mod. Alkaline - 448 (-) umho/cm None - 18 (-) ppm***	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484028
Customer Sample ID: 825
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.3	(6.5)	-	Mod. All	kaline					
Conductivity	218	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	15	(50)	ppm		ШШШ	Ш				2.7 lbs P2O5/1000sqft
Potassium	213	(175)	ppm		111111111111	IIIIIIIIII	11111111111)		0 lbs K20/1000sqft
Calcium	13,715	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	295	(50)	ppm		111111111111	IIIIIIIIII		111111		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	11111111111			11111111111	11		0 lbs S/1000sqft
Sodium	24	(-)	ppm	Ш						
ron										
Zinc										
/langanese										
Copper										
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft
-										
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483989
Customer Sample ID: 826
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alka	line					
Conductivity	282	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**				l			0 lbs N/1000sqft
Phosphorus	182	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	381	(175)	ppm					1111111111		0 lbs K20/1000sqft
Calcium	14,711	(180)	ppm					mmi	II	0 lbs Ca/1000sqft
Magnesium	444	(50)	ppm					mmi	l	0 lbs Mg/1000sgft
Sulfur	55	(13)	ppm	11111111111111					II	0 lbs S/1000sqft
Sodium	32	(-)	ppm	IIIIIII						
ron										
Zinc										
V anganese							i			
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI Critical lavel is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484029 Customer Sample ID: 827 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	kaline					
Conductivity	222	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	IIIIIIII						1 lbs N/1000sqft
Phosphorus	118	(50)	ppm		ШШШ	IIIIIIIIII		11111111111	II	0 lbs P2O5/1000sqft
Potassium	252	(175)	ppm		1111111111111	IIIIIIIIII		11111		0 lbs K20/1000sqft
Calcium	5,913	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	354	(50)	ppm		111111111111	IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm		111111111111	IIIIIIIIII		11111		0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron										
Zinc Zinc										
Manganese										
Copper										
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484132
Customer Sample ID: 828
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	422	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**	11111111111		Ш				0.5 lbs N/1000sqft
Phosphorus	287	(50)	ppm	11111111111		IIIIIIIIII	,,,,,,,,,,,	mmmi	Ш	0 lbs P2O5/1000sqft
Potassium	344	(175)	ppm	11111111111		IIIIIIIIII	11111111111			0 lbs K20/1000sqft
Calcium	15,713	(180)	ppm	11111111111	:					0 lbs Ca/1000sqft
Magnesium	451	(50)	ppm	11111111111		IIIIIIIIII		mmi	l	0 lbs Mg/1000sgft
Sulfur	42	(13)	ppm	11111111111		IIIIIIIIII	11111111111			0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
Zinc Zinc										
Manganese										
Copper										
3oron										
imestone Requirement										0.00 lbs/1000sqft
CI -Critical layed is the point w	high no add	itional nu	triant (avalue	dina nitrata	N ooo	lium on	d oondu	otivity) i	rocomi	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484030
Customer Sample ID: 829
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	180	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**							1 lbs N/1000sqft
Phosphorus	334	(50)	ppm				шшц		IIIIII	0 lbs P2O5/1000sqft
Potassium	273	(175)	ppm				1000000	Ш		0 lbs K20/1000sqft
Calcium	12,021	(180)	ppm	111111111111			111111111111		II	0 lbs Ca/1000sqft
//agnesium	560	(50)	ppm					ШШЩ	II	0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm	111111111111			11111111111	IIIIIII		0 lbs S/1000sqft
Sodium	24	(-)	ppm	Ш						
ron										
Zinc										
Manganese							i			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w								\ .		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483891
Customer Sample ID: 830
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OI *								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	200	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	980	(50)	ppm				шшц		IIIIIII	0 lbs P2O5/1000sqft
Potassium	312	(175)	ppm							0 lbs K20/1000sqft
Calcium	8,923	(180)	ppm	11111111111		:				0 lbs Ca/1000sqft
/lagnesium	656	(50)	ppm				111111111111111111111111111111111111111	IIIIIIIII	II	0 lbs Mg/1000sgft
Sulfur	61	(13)	ppm	11111111111		ШШШ	1111111111		II	0 lbs S/1000sqft
Sodium	46	(-)	ppm	1111111111						
ron										
Zinc							I			
Manganese							i			
Copper							i			
Boron							¦			
imestone Requirement				•						0.00 lbs/1000sqft
CL -Critical layed is the point w							_	\ ·		1 1 44

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483892
Customer Sample ID: 831
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	kaline					
Conductivity	398	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111111						1 lbs N/1000sqft
Phosphorus	135	(50)	ppm				11111111111		I	0 lbs P2O5/1000sqft
Potassium	588	(175)	ppm		111111111111	1111111111	11111111111	mmi	ı	0 lbs K20/1000sqft
Calcium	17,285	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	231	(50)	ppm				111111111111	11111		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	11111111111		1111111111	11111111111	111111		0 lbs S/1000sqft
Sodium	15	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper							i			
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483928
Customer Sample ID: 833
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		CI *	Unito							_
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. All	caline					
Conductivity	203	(-)	umho/cm	None			CI	* .		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	92	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	489	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	21,575	(180)	ppm	1000000						0 lbs Ca/1000sqft
Magnesium	442	(50)	ppm		111111111111	ШШШ		mmmi		0 lbs Mg/1000sgft
Sulfur	49	(13)	ppm	11111111111	111111111111	IIIIIIIIIII	11111111111	111111111111		0 lbs S/1000sqft
Sodium	381	(-)	ppm	11111111111	111111111111	ШШШ				
ron										
Zinc Zinc										
Manganese							i			
Copper										
Boron										
imestone Requirement				· ·				·		0.00 lbs/1000sqft
										·
CL Critical layed in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483964 Customer Sample ID: 834 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	212	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	IIIIIIII						1 lbs N/1000sqft
Phosphorus	136	(50)	ppm				11111111111	11111111111	II	0 lbs P2O5/1000sqft
Potassium	194	(175)	ppm				11111111111) [0 lbs K20/1000sqft
Calcium	6,032	(180)	ppm				: .	. :		0 lbs Ca/1000sqft
Magnesium	552	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm				111111111111	1111111		0 lbs S/1000sqft
Sodium	33	(-)	ppm	IIIIIII						
ron										
Zinc Zinc										
Manganese										
Copper										
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483929
Customer Sample ID: 835
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рΗ	8.0	(6.5)	-	Mod. Alkaline
Conductivity	182	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	IIIIIII 1.1 lbs N/1000sqft
Phosphorus	75	(50)	ppm	
Potassium	295	(175)	ppm	
Calcium	9,381	(180)	ppm	
Magnesium	304	(50)	ppm	
Sulfur	20	(13)	ppm	
Sodium	347	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484031 Customer Sample ID: 836 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Al	kaline					
Conductivity	168	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	III						1.2 lbs N/1000sqft
Phosphorus	7	(50)	ppm	1111111111	11111			l		3.4 lbs P2O5/1000sqft
Potassium	90	(175)	ppm	1111111111	111111111111			l I		1.9 lbs K20/1000sqft
Calcium	7,813	(180)	ppm		111111111111				II	0 lbs Ca/1000sqft
Magnesium	249	(50)	ppm	1111111111	111111111111			11111		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm	1111111111	1111111111111		11111111111	1		0 lbs S/1000sqft
Sodium	47	(-)	ppm							
Iron								l		
Zinc										
Manganese										
Copper										
Boron							,			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483930
Customer Sample ID: 837
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	IARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkaline					
Conductivity	212	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	1111111111111111					0.8 lbs N/1000sqft
Phosphorus	723	(50)	ppm			μιπιπιφ	mmi	ШШ	0 lbs P2O5/1000sqft
Potassium	319	(175)	ppm	111111111111111111111111111111111111111	ШШШ	j umuny	111111		0 lbs K20/1000sqft
Calcium	9,453	(180)	ppm			: .	:	:	0 lbs Ca/1000sqft
Magnesium	468	(50)	ppm		ШШШ	9111111111114	mmini		0 lbs Mg/1000sgft
Sulfur	50	(13)	ppm		ШШШ	ļum þ	mmi		0 lbs S/1000sqft
Sodium	346	(-)	ppm		ШШ				
Iron									
Zinc						- :			
Manganese						į			
Copper						i			
Boron									
Limestone Requirement									0.00 lbs/1000sqft
*CL -Critical level is the point w	hich no add	itional nu	triont (ovolue	ling pitroto N. coo	lium or	ad aandu	otivity) ic	rocomi	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483931
Customer Sample ID: 838
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Al	kaline					
Conductivity	223	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	249	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	335	(175)	ppm	1111111111				111111111		0 lbs K20/1000sqft
Calcium	7,333	(180)	ppm						ll .	0 lbs Ca/1000sqft
lagnesium	346	(50)	ppm					111111111		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm			ШШШ		111		0 lbs S/1000sqft
Sodium	337	(-)	ppm		ļumum					
ron										
linc								·		
/langanese							į			
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484032 Customer Sample ID: 839 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alka	aline					
Conductivity	320	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	80	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	553	(175)	ppm	111111111111111111111111111111111111111	1111111111		mm	mmi	II .	0 lbs K20/1000sqft
Calcium	13,838	(180)	ppm	111111111111111111111111111111111111111					ll .	0 lbs Ca/1000sqft
Magnesium	346	(50)	ppm	11111111111111						0 lbs Mg/1000sgft
Sulfur	118	(13)	ppm				111111111 1			0 lbs S/1000sqft
Sodium	56	(-)	ppm							
Iron							i			
Zinc										
Manganese							į			
Copper							i			
Boron							ł			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483990
Customer Sample ID: 840
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow \	/Low	Low	Mod	High	VHigh	Excess.
ρΗ	7.9	(6.5)	-	Mod. Alkali	ne					
Conductivity	362	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	32	(-)	ppm**		ШШ		III			0 lbs N/1000sqft
Phosphorus	104	(50)	ppm		IIIIIIII				I	0 lbs P2O5/1000sqft
Potassium	444	(175)	ppm		ШШ			mmmi		0 lbs K20/1000sqft
Calcium	13,975	(180)	ppm		ШШ				I	0 lbs Ca/1000sqft
Magnesium	392	(50)	ppm		ШШ					0 lbs Mg/1000sgft
Sulfur	153	(13)	ppm					Maria	11111111	0 lbs S/1000sqft
Sodium	64	(-)	ppm							
ron								l		
Zinc										
Vlanganese							į			
Copper							i			
Boron							l I			
Limestone Requirement								·		0.00 lbs/1000sqft
CL - Critical lovel is the point w		:4: I	4ml = m 4 / = = l	lin n nitanta N				\ ·		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483932
Customer Sample ID: 841
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	536	(-)	umho/cm	Slight			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	392	(50)	ppm		111111111111		111111111111111111111111111111111111111	11111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	386	(175)	ppm		111111111111	11111111111	111111111111	11111111111		0 lbs K20/1000sqft
Calcium	4,418	(180)	ppm	11111111111		:	: .			0 lbs Ca/1000sqft
Magnesium	314	(50)	ppm		111111111111			1111111		0 lbs Mg/1000sgft
Sulfur	269	(13)	ppm	11111111111	111111111111		111111111111	111111111111	1111111111	0 lbs S/1000sqft
Sodium	355	(-)	ppm		111111111111	IIIIIIIII				
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layel is the point w	1 . 1					r.				1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484033 Customer Sample ID: 842 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	253	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	151	(50)	ppm				111111111111	ļuunuķi	II	0 lbs P2O5/1000sqft
Potassium	512	(175)	ppm				111111111111	ļimminiķi		0 lbs K20/1000sqft
Calcium	5,882	(180)	ppm	11111111111		•	:			0 lbs Ca/1000sqft
Magnesium	428	(50)	ppm		111111111111		111111111111	hooni		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm		111111111111		111111111111	11111		0 lbs S/1000sqft
Sodium	58	(-)	ppm		I					
Iron										
Zinc								! !		
Manganese										
Copper								i		
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484034 Customer Sample ID: 843 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G									
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Slightly Alkaline					
Conductivity	288	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**	111111111111111111111111111111111111111					0.7 lbs N/1000sqft
Phosphorus	171	(50)	ppm			,,,,,,,,,,,,,,,,,	mmi	II	0 lbs P2O5/1000sqft
Potassium	515	(175)	ppm				mmmķ		0 lbs K20/1000sqft
Calcium	9,477	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	520	(50)	ppm	111111111111111111111111111111111111111			mmi	l	0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm				1111111		0 lbs S/1000sqft
Sodium	63	(-)	ppm	11111111111111					
ron									
Zinc									
Manganese						į			
Copper						i i			
Boron									
Limestone Requirement				·					0.00 lbs/1000sqft
:01 0 ::: 11 1: 11							\ .		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484035
Customer Sample ID: 844
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.1	(6.5)	-	Neutral						
Conductivity	268	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	52	(-)	ppm**				111111111111	11		0 lbs N/1000sqft
Phosphorus	175	(50)	ppm				11111111111		Ш	0 lbs P2O5/1000sqft
Potassium	305	(175)	ppm				11111111111	1111111		0 lbs K20/1000sqft
Calcium	6,529	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	501	(50)	ppm				111111111111	mmi	II	0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm			ШШШ	11111111111	1111111		0 lbs S/1000sqft
Sodium	49	(-)	ppm	1111111111						
Iron							l l			
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI —Critical loval is the point w			tul t / l		N		al a a a al.	\ ·		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484036 Customer Sample ID: 845 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	IARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	478	(-)	umho/cm	Slight CL. Fertilizer Recommended
Nitrate-N	84	(-)	ppm**	
Phosphorus	316	(50)	ppm	1111111111111111111111111111111111111
Potassium	378	(175)	ppm	
Calcium	8,305	(180)	ppm	
Magnesium	460	(50)	ppm	
Sulfur	32	(13)	ppm	
Sodium	37	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
CL Critical layed in the point w	hich no add	itional nu	triont (ovelue	iding nitrate-N, sodium and conductivity) is recommended **nnm-ma/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484037 Customer Sample ID: 846

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.9	(6.5)	-	Mod. Alkaline
Conductivity	242	(-)	umho/cm	
Nitrate-N	21	(-)	ppm**	
Phosphorus	324	(50)	ppm	
Potassium	478	(175)	ppm	
Calcium	9,998	(180)	ppm	
Magnesium	549	(50)	ppm	
Sulfur	35	(13)	ppm	
Sodium	24	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				dina ritrata N. codium and conductivity) is recommended **********************************

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484039
Customer Sample ID: 847
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	193	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	31	(50)	ppm		ШШШ	IIIIIIIIII	Ш	l I		1.5 lbs P2O5/1000sqft
Potassium	238	(175)	ppm	11111111111	1111111111111	IIIIIIIIII)III		0 lbs K20/1000sqft
Calcium	15,840	(180)	ppm	11111111111	111111111111			(((((((((((((((((((((((((((((((((((((((II	0 lbs Ca/1000sqft
/lagnesium	322	(50)	ppm	11111111111	111111111111	IIIIIIIIII		1111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111	111111111111		11111111111	11111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
ron										
Zinc								l 		
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CI. Critical laval is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483965 Customer Sample ID: 848 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN					
Analysis	Results	CL*	Units	ExLow VLow Low Mod High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. Alkaline		
Conductivity	135	(-)	umho/cm	None CL*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**			1.4 lbs N/1000sqft
Phosphorus	50	(50)	ppm	111111111111111111111111111111111111111		0 lbs P2O5/1000sqft
Potassium	165	(175)	ppm			0.2 lbs K20/1000sqft
Calcium	5,399	(180)	ppm			0 lbs Ca/1000sqft
/lagnesium	174	(50)	ppm			0 lbs Mg/1000sgft
Sulfur	12	(13)	ppm			0.25 lbs S/1000sqft
Sodium	9	(-)	ppm	1		
ron						
linc				<u> </u>		
/langanese						
Copper						
Boron						
imestone Requirement						0.00 lbs/1000sqft
CL Critical layed in the paint w	hich no add	itional nu	triont (ovoluc	ling nitrate-N sodium and conductivity)	ic rocom	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483966
Customer Sample ID: 849
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	220	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	93	(50)	ppm	11111111111	111111111111					0 lbs P2O5/1000sqft
Potassium	315	(175)	ppm		111111111111					0 lbs K20/1000sqft
Calcium	11,521	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	478	(50)	ppm	1111111111	111111111111				l	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	1111111111	111111111111			IIIIII		0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483893
Customer Sample ID: 850
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	IARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkaline					
Conductivity	312	(-)	umho/cm	None		CL	•		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	11111111111111					0.8 lbs N/1000sqft
Phosphorus	490	(50)	ppm		IIIIIIIII	μιπιπιφ	mmi	Ш	0 lbs P2O5/1000sqft
Potassium	396	(175)	ppm	111111111111111111111111111111111111111	ШШШ	j umuny	111111111		0 lbs K20/1000sqft
Calcium	7,068	(180)	ppm				:	:	0 lbs Ca/1000sqft
Magnesium	877	(50)	ppm		ШШШ	911111111114	mmi	ı	0 lbs Mg/1000sgft
Sulfur	40	(13)	ppm		ШШШ	ļum þ	111111111		0 lbs S/1000sqft
Sodium	63	(-)	ppm	11111111111111					
Iron									
Zinc						- :			
Manganese						į			
Copper						i			
Boron						<u> </u>			
Limestone Requirement									0.00 lbs/1000sqft
CI -Critical level is the point w	high no add	itional nu	triant (avalue	ling nitrate N cod	ium or	d condu	otivity () ic	rocom	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483991 Customer Sample ID: 851 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.1	(6.5)	-	Mod. All	caline					
Conductivity	203	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	110	(50)	ppm		ШШШ				l l	0 lbs P2O5/1000sqft
Potassium	251	(175)	ppm				11111111111	11111		0 lbs K20/1000sqft
Calcium	25,027	(180)	ppm	11111111111			11111111111	(11111111111111111111111111111111111111	l l	0 lbs Ca/1000sqft
Magnesium	468	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	42	(13)	ppm	11111111111			11111111111	11111111111		0 lbs S/1000sqft
Sodium	60	(-)	ppm	11111111111	III					
ron										
linc										
Manganese							i			
Copper										
Boron							ļ			
imestone Requirement				·						0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483933 Customer Sample ID: 853 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Al	kaline					
Conductivity	362	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	33	(50)	ppm							1.3 lbs P2O5/1000sqft
Potassium	623	(175)	ppm				11111111111			0 lbs K20/1000sqft
Calcium	7,294	(180)	ppm	:	•	•	111111111111111111111111111111111111111		I	0 lbs Ca/1000sqft
Magnesium	306	(50)	ppm	1111111111			111111111111			0 lbs Mg/1000sgft
Sulfur	12	(13)	ppm	1111111111			11111111111			0.25 lbs S/1000sqft
Sodium	334	(-)	ppm	1111111111						
ron							ļ ¦			
Zinc Zinc							1			
/langanese							į			
Copper							i			
Boron							!			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483894
Customer Sample ID: 854
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.2	(6.5)	-	Slightly	Alkaline					
Conductivity	782	(-)	umho/cm	Slight			CI			Fertilizer Recommended
Nitrate-N	164	(-)	ppm**				11111111111		11111111	0 lbs N/1000sqft
Phosphorus	580	(50)	ppm	111111111111			11111111111	11111111111	111111	0 lbs P2O5/1000sqft
Potassium	528	(175)	ppm	11111111111		1111111111	11111111111	mmi	ı	0 lbs K20/1000sqft
Calcium	8,349	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	1,252	(50)	ppm				111111111111		II	0 lbs Mg/1000sgft
Sulfur	55	(13)	ppm	11111111111		1111111111	11111111111	111111111111	l l	0 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483992 Customer Sample ID: 856 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	8.7	(6.5)	-	Mod. Alka	line					
Conductivity	295	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**			IIIIII				0.4 lbs N/1000sqft
Phosphorus	304	(50)	ppm				шшщ			0 lbs P2O5/1000sqft
Potassium	1644	(175)	ppm				mmmt		Ш	0 lbs K20/1000sqft
Calcium	12,021	(180)	ppm				111111111111111111111111111111111111111		II	0 lbs Ca/1000sqft
/lagnesium	581	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	56	(13)	ppm	11111111111111			шшщ		II	0 lbs S/1000sqft
Sodium	65	(-)	ppm		II .					
ron										
Zinc							!			
Manganese							į			
Copper							i			
Boron							! !			
imestone Requirement										0.00 lbs/1000sqft
Cl. Oritical layed in the maint w						_				

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483993 Customer Sample ID: 857 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

T.9	Crop Grown: G	ARDEN									
Conductivity 233 (-) umho/cm None CL Fertilizer Recommended	Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
1.1	рН	7.9	(6.5)	-	Mod. All	kaline					
188 (50) ppm	Conductivity	233	(-)	umho/cm	None			CL	*		Fertilizer Recommended
otassium 267 (175) ppm	Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Salicium	Phosphorus	188	(50)	ppm				11111111111	111111111111	II	0 lbs P2O5/1000sqft
Section Sect	Potassium	267	(175)	ppm	11111111111	111111111111			11111		0 lbs K20/1000sqft
ulfur 25 (13) ppm	Calcium	8,006	(180)	ppm							0 lbs Ca/1000sqft
odium 21 (-) ppm IIII	Magnesium	585	(50)	ppm		111111111111				II .	0 lbs Mg/1000sgft
on inc langanese opper oron	Sulfur	25	(13)	ppm	11111111111			11111111111	111111		0 lbs S/1000sqft
inc langanese opper oron	Sodium	21	(-)	ppm	IIII						
anganese opper oron	Iron										
opper oron	Zinc										
oron ¦	Manganese										
	Copper							i			
imestone Requirement 0.00 lbs/1000sqft	Boron										
	Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484133 Customer Sample ID: 858 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
Н	7.9	(6.5)	-	Mod. Alkaline
Conductivity	346	(-)	umho/cm	
Nitrate-N	33	(-)	ppm**	
Phosphorus	523	(50)	ppm	
Potassium	935	(175)	ppm	
Calcium	21,928	(180)	ppm	
Magnesium	443	(50)	ppm	
Sulfur	119	(13)	ppm	
Sodium	113	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
imestone Requirement				0.00 lbs/1000sqft
				All part and the second of the

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484040
Customer Sample ID: 860
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	370	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	342	(50)	ppm	111111111111			11111111111		IIIIII	0 lbs P2O5/1000sqft
Potassium	510	(175)	ppm	11111111111			11111111111		l	0 lbs K20/1000sqft
Calcium	11,112	(180)	ppm	11111111111			11111111111		II	0 lbs Ca/1000sqft
/lagnesium	675	(50)	ppm	11111111111			11111111111		II	0 lbs Mg/1000sgft
Sulfur	71	(13)	ppm	11111111111			11111111111		Ш	0 lbs S/1000sqft
Sodium	114	(-)	ppm	11111111111		I				
ron										
Zinc Zinc										
/langanese							i			
Copper										
Boron							¦			
imestone Requirement				· ·						0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484041 Customer Sample ID: 861 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	222	(-)	umho/cm	None			С	<u>*</u>		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	11111111111	Ш					0.8 lbs N/1000sqft
Phosphorus	206	(50)	ppm	111111111111					Ш	0 lbs P2O5/1000sqft
Potassium	257	(175)	ppm	11111111111				ן וווון		0 lbs K20/1000sqft
Calcium	10,878	(180)	ppm	11111111111		:	:			0 lbs Ca/1000sqft
Magnesium	543	(50)	ppm	11111111111					II .	0 lbs Mg/1000sgft
Sulfur	38	(13)	ppm	11111111111			11111111111	111111111		0 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement				·						0.00 lbs/1000sqft
CI -Critical level is the point w	high na add	itional nu	triant (avalua	lina nitrata	N nor	dium on	d condi	otivity) i	o rocom	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483967
Customer Sample ID: 862
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
Н	7.9	(6.5)	-	Mod. Alkaline
Conductivity	415	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	
Phosphorus	140	(50)	ppm	
Potassium	640	(175)	ppm	
Calcium	12,619	(180)	ppm	
Magnesium	374	(50)	ppm	
Sulfur	24	(13)	ppm	
Sodium	55	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
imestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484042 Customer Sample ID: 863 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Al	kaline					
Conductivity	158	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
hosphorus	116	(50)	ppm				######################################	mmi	I	0 lbs P2O5/1000sqft
otassium	140	(175)	ppm				: .			0.7 lbs K20/1000sqft
Calcium	5,481	(180)	ppm	:	ļuuuuu	•	: .			0 lbs Ca/1000sqft
lagnesium	170	(50)	ppm				111111111111	III		0 lbs Mg/1000sgft
Gulfur	12	(13)	ppm				11111111111			0.25 lbs S/1000sqft
Godium	9	(-)	ppm	1						
ron							l l			
linc							l ¦			
langanese							į			
Copper							i			
Boron							!			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483895
Customer Sample ID: 864
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
θH	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	246	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	75	(50)	ppm		1111111111			111111		0 lbs P2O5/1000sqft
Potassium	345	(175)	ppm							0 lbs K20/1000sqft
Calcium	13,992	(180)	ppm	1111111111111	11111111111			(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	380	(50)	ppm		11111111111					0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	1111111111111	11111111111			Ш		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483896 Customer Sample ID: 865 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		01 #								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	6.9	(6.5)	-	Slightly	Acid					
Conductivity	158	(-)	umho/cm	None			. CI	*		Fertilizer Recommended
Nitrate-N	16	(-)	ppm**							0.6 lbs N/1000sqft
Phosphorus	644	(50)	ppm		ШШШ				ШШ	0 lbs P2O5/1000sqft
Potassium	146	(175)	ppm		111111111111		111111111			0.6 lbs K20/1000sqft
Calcium	3,563	(180)	ppm	11111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	III		0 lbs Ca/1000sqft
/lagnesium	138	(50)	ppm	111111111111				III		0 lbs Mg/1000sgft
Sulfur	66	(13)	ppm	11111111111			11111111111		II	0 lbs S/1000sqft
Sodium	11	(-)	ppm	II .						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484057 Customer Sample ID: 867 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. Al	kaline					
Conductivity	332	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	9	(50)	ppm	1111111111						3.2 lbs P2O5/1000sqft
Potassium	344	(175)	ppm	1111111111		1111111111	111111111111	1111111111		0 lbs K20/1000sqft
Calcium	18,566	(180)	ppm	:	:	:	: .	annan (II	0 lbs Ca/1000sqft
/lagnesium	125	(50)	ppm	1111111111			11111111111	Ш		0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	1111111111			1111111111			0.25 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111						
ron										
linc										
/langanese										
Copper							i			
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w	hich no add	itional nu	triant (avalue	lina nitrot	o NI ood	dium on	d condi	otivity) i	o rocomi	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483934 Customer Sample ID: 868 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alka	lline					
Conductivity	252	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	10	(-)	ppm**							1 lbs N/1000sqft
Phosphorus	173	(50)	ppm				::::::::¢		II	0 lbs P2O5/1000sqft
Potassium	422	(175)	ppm		ШШЩ	IIIIIIIIII	111111111111111111111111111111111111111	mmi	l	0 lbs K20/1000sqft
Calcium	5,679	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	377	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm	11111111111111	111111111			II .		0 lbs S/1000sqft
Sodium	330	(-)	ppm		ШШЩ	IIIIIIII				
ron										
Zinc							!			
Manganese							į			
Copper							i			
Boron							!			
imestone Requirement				•				·		0.00 lbs/1000sqft
Critical level is the paint w		1								

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483897 Customer Sample ID: 869 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. All	kaline					
Conductivity	218	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	333	(50)	ppm				111111111111111111111111111111111111111	mmi	Ш	0 lbs P2O5/1000sqft
Potassium	777	(175)	ppm	11111111111	111111111111		111111111111	mmi	ı	0 lbs K20/1000sqft
Calcium	12,068	(180)	ppm			:	: .	mmmi	:	0 lbs Ca/1000sqft
Magnesium	470	(50)	ppm					mmi		0 lbs Mg/1000sgft
Sulfur	260	(13)	ppm	11111111111			111111111111	111111111111111111111111111111111111111	1111111111	0 lbs S/1000sqft
Sodium	171	(-)	ppm	11111111111	111111111111	Ш				
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
*CL -Critical lovel is the point w	1.1.1.1.1.1	!4! I	tul = = t / = - = l =	Um an and the and	- NI		al a a a alu			1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484058
Customer Sample ID: 870
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	248	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	214	(50)	ppm	111111111111			mmu	uuuuui (Ш	0 lbs P2O5/1000sqft
Potassium	293	(175)	ppm				111111111111111111111111111111111111111	IIIII		0 lbs K20/1000sqft
Calcium	11,017	(180)	ppm	111111111111			111111111111		ll .	0 lbs Ca/1000sqft
/lagnesium	662	(50)	ppm				11111111111	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	II .	0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm	1111111111111						0 lbs S/1000sqft
Sodium	64	(-)	ppm	111111111111	Ш					
ron										
Zinc Zinc							!			
Manganese							i			
Copper							i			
Boron							:			
imestone Requirement								•		0.00 lbs/1000sqft
CL -Critical layel is the point w					-	ı.		\ .		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483994
Customer Sample ID: 871
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

	Crop Grown: G	ARDEN								
Conductivity 343 (-) umho/cm None CL Fertilizer Recommended	Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
Iterate-N	рН	7.9	(6.5)	-	Mod. Alkaline					
Cotassium	Conductivity	343	(-)	umho/cm	None		CL	<u>.</u> *		Fertilizer Recommended
Cotassium	Nitrate-N	10	(-)	ppm**	111111111					1 lbs N/1000sqft
Calcium 6,333 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Phosphorus	222	(50)	ppm			111111111111111111111111111111111111111		Ш	0 lbs P2O5/1000sqft
Independent	Potassium	296	(175)	ppm		111111111)11111		0 lbs K20/1000sqft
Sulfur 79 (13) ppm	Calcium	6,333	(180)	ppm	: :	:		. :		0 lbs Ca/1000sqft
codium 46 (-) ppm IIIIIIIII	Magnesium	1,402	(50)	ppm						0 lbs Mg/1000sgft
ron Cinc Ianganese Copper Coron	Sulfur	79	(13)	ppm		ШШШ		1111111111	Ш	0 lbs S/1000sqft
Inc Inganese Copper Coron	Sodium	46	(-)	ppm	1111111111					
langanese Copper Coron	Iron									
Copper Co	Zinc									
oron ¦	Manganese									
	Copper						i			
imestone Requirement 0.00 lbs/1000sqft	Boron						l			
	Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483935
Customer Sample ID: 872
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	198	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	4	(-)	ppm**	III						1.2 lbs N/1000sqft
hosphorus	74	(50)	ppm				111111111111	111111		0 lbs P2O5/1000sqft
Potassium	293	(175)	ppm		111111111111		111111111111	111111		0 lbs K20/1000sqft
Calcium	5,266	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	384	(50)	ppm		111111111111		111111111111			0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm	11111111111				ı		0 lbs S/1000sqft
Sodium	321	(-)	ppm	11111111111		IIIIIII				
ron										
Zinc Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483995
Customer Sample ID: 873
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	8.0	(6.5)	-	Mod. Alkaline
Conductivity	258	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	16	(-)	ppm**	
Phosphorus	578	(50)	ppm	
Potassium	262	(175)	ppm	
Calcium	6,718	(180)	ppm	
Magnesium	1,414	(50)	ppm	
Sulfur	50	(13)	ppm	
Sodium	49	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrate N. codium and conductivity) is recommended **ppm-mg//g

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483996 Customer Sample ID: 874 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.3	(6.5)	-	Mod. Alk	aline					
Conductivity	178	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	III						1.2 lbs N/1000sqft
Phosphorus	52	(50)	ppm	11111111111			11111111111	1		0 lbs P2O5/1000sqft
Potassium	283	(175)	ppm		111111111111	IIIIIIIIII	11111111111	111111		0 lbs K20/1000sqft
Calcium	10,187	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	406	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm				11111111111	ı		0 lbs S/1000sqft
Sodium	32	(-)	ppm	IIIIIII						
ron										
Zinc Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484059 Customer Sample ID: 876 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.4	(6.5)	-	Slightly A	lkaline					
333	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
11	(-)	ppm**							0.9 lbs N/1000sqft
424	(50)	ppm			IIIIIIIIII	:::::::(Ш	0 lbs P2O5/1000sqft
511	(175)	ppm				111111111111111111111111111111111111111	mmi		0 lbs K20/1000sqft
13,145	(180)	ppm							0 lbs Ca/1000sqft
608	(50)	ppm			1111111111	11111111111		I	0 lbs Mg/1000sgft
26	(13)	ppm			IIIIIIIIII	11111111111	111111		0 lbs S/1000sqft
56	(-)	ppm							
						· ·			
						ļ			
						i			
						!			
									0.00 lbs/1000sqft
	7.4 333 11 424 511 13,145 608 26 56	7.4 (6.5) 333 (-) 11 (-) 424 (50) 511 (175) 13,145 (180) 608 (50) 26 (13) 56 (-)	7.4 (6.5) - 333 (-) umho/cm 11 (-) ppm** 424 (50) ppm 511 (175) ppm 13,145 (180) ppm 608 (50) ppm 26 (13) ppm 56 (-) ppm	7.4 (6.5) - Slightly A 333 (-) umho/cm None 11 (-) ppm**	7.4 (6.5) - Slightly Alkaline 333 (-) umho/cm None 11 (-) ppm**	7.4 (6.5) - Slightly Alkaline 333 (-) umho/cm 11 (-) ppm** 424 (50) ppm 511 (175) ppm 13,145 (180) ppm 608 (50) ppm 26 (13) ppm 1444 (130) ppm 1556 (-) ppm 156 (-) ppm 157 (175) ppm 157 (175) ppm 158 (180) ppm 159 (180) ppm 160 (180) ppm 1	7.4 (6.5) - Slightly Alkaline 333 (-) umho/cm None ct 11 (-) ppm** IIIIIIIIII IIIIIIIIIIIIIIIIIIIIII	7.4 (6.5) - Slightly Alkaline 333 (-) umho/cm 11 (-) ppm** 424 (50) ppm 511 (175) ppm 13,145 (180) ppm 608 (50) ppm 1608 (50) ppm 17.4 (6.5) - Slightly Alkaline 18.5 (-) ppm	7.4 (6.5) - Slightly Alkaline 333 (-) umho/cm None ct- 11 (-) ppm**

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484060
Customer Sample ID: 877
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	line					
Conductivity	482	(-)	umho/cm	Slight			CI	*		Fertilizer Recommended
Nitrate-N	31	(-)	ppm**		111111111	IIIIIIIIII	Ш			0 lbs N/1000sqft
Phosphorus	313	(50)	ppm		IIIIIIIII	IIIIIIIIII			Ш	0 lbs P2O5/1000sqft
Potassium	761	(175)	ppm		ШШШ	IIIIIIIIII		himmi	l l	0 lbs K20/1000sqft
Calcium	13,249	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	451	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	181	(13)	ppm			IIIIIIIIII		1111111111	111111111	0 lbs S/1000sqft
Sodium	63	(-)	ppm		ı					
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w			4ml = m 4 / = = l		NI	Daniel Comp	al a a sa als	4114\ 1		1 1 **

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483898
Customer Sample ID: 879
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alka	aline					
Conductivity	292	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	117	(50)	ppm			IIIIIIIIII			I	0 lbs P2O5/1000sqft
Potassium	434	(175)	ppm			IIIIIIIIIII	11111111111)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		0 lbs K20/1000sqft
Calcium	9,962	(180)	ppm	11111111111111						0 lbs Ca/1000sqft
Magnesium	476	(50)	ppm			IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	49	(13)	ppm				111111111111	111111111111		0 lbs S/1000sqft
Sodium	75	(-)	ppm		Ш					
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
	·		·	·						·

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484043 Customer Sample ID: 880 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	175	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
litrate-N	5	(-)	ppm**	III						1.2 lbs N/1000sqft
hosphorus	38	(50)	ppm		ШШШ		IIIIII			0.9 lbs P2O5/1000sqft
otassium	147	(175)	ppm	11111111111	111111111111		111111111	!		0.6 lbs K20/1000sqft
Calcium	12,601	(180)	ppm	11111111111			:		II	0 lbs Ca/1000sqft
Magnesium	255	(50)	ppm		111111111111			111111		0 lbs Mg/1000sgft
Gulfur	18	(13)	ppm		111111111111			111		0 lbs S/1000sqft
Sodium	29	(-)	ppm	IIIIII						
ron										
linc								l		
/langanese										
Copper								i		
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483899 Customer Sample ID: 881 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	369	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	24	(-)	ppm**	11111111111						0.3 lbs N/1000sqft
Phosphorus	226	(50)	ppm	11111111111				,,,,,,,,,,,,	IIII	0 lbs P2O5/1000sqft
Potassium	436	(175)	ppm	11111111111)11111111111	l	0 lbs K20/1000sqft
Calcium	8,957	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	595	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	84	(13)	ppm	11111111111				1111111111111111111111111111111111111	IIII	0 lbs S/1000sqft
Sodium	40	(-)	ppm	11111111						
ron										
Zinc										
Manganese										
Copper							i			
Boron							l			
imestone Requirement				·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483968
Customer Sample ID: 882
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	208	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	40	(50)	ppm	11111111111			1111111			0.7 lbs P2O5/1000sqft
Potassium	226	(175)	ppm	11111111111				Ш		0 lbs K20/1000sqft
Calcium	24,516	(180)	ppm	11111111111			11111111111	11111111111	I	0 lbs Ca/1000sqft
Magnesium	451	(50)	ppm	11111111111				mmi	l	0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm	11111111111			11111111111	1111111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111						
Iron										
Zinc										
Manganese										
Copper							l			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layed is the point w					N.I.	ı.	1 1	v		1 1 44 0

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483997 Customer Sample ID: 883 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.0	(6.5)	-	Mod. Al	kaline					
Conductivity	188	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	253	(50)	ppm	1111111111	ļuuuuu		,,,,,,,,,,,,,,,	mmi	Ш	0 lbs P2O5/1000sqft
Potassium	449	(175)	ppm	1111111111	ļmmi			mmi		0 lbs K20/1000sqft
Calcium	8,978	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	322	(50)	ppm				,,,,,,,,,,,,,,,			0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm			ШШШ	111111111111	II .		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
ron										
Zinc										
Manganese							į			
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL =Critical level is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484044
Customer Sample ID: 884
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow VL	ow I	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkal	ine					
Conductivity	1,410	(-)	umho/cm	Moderate			CL			Fertilizer Recommended
Nitrate-N	85	(-)	ppm**		ШШ	ШШ	1111111111	1111111111		0 lbs N/1000sqft
Phosphorus	499	(50)	ppm		ШШ	1111111	шшц		IIIIII	0 lbs P2O5/1000sqft
Potassium	461	(175)	ppm		ШШ	ШШ	mmn	mmi	ı	0 lbs K20/1000sqft
Calcium	13,242	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	559	(50)	ppm		ШШ	ШШ		IIIIIIII	II .	0 lbs Mg/1000sgft
Sulfur	658	(13)	ppm		ШШ	11111111	шш			0 lbs S/1000sqft
Sodium	67	(-)	ppm							
Iron								İ		
Zinc										
Manganese							į			
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft
01 0 20 11 12 01 2 1				NI				\ ·		1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483969 Customer Sample ID: 885 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	339	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	94	(50)	ppm					11111111111		0 lbs P2O5/1000sqft
Potassium	439	(175)	ppm					mmi		0 lbs K20/1000sqft
Calcium	14,246	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	441	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
Sodium	22	(-)	ppm	IIII						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483998
Customer Sample ID: 886
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Al	kaline					
Conductivity	753	(-)	umho/cm	Slight			CI			Fertilizer Recommended
Nitrate-N	84	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	490	(50)	ppm			IIIIIIIIII		111111111111	ШШ	0 lbs P2O5/1000sqft
Potassium	806	(175)	ppm		111111111	IIIIIIIIII		,,,,,,,,,,,,,,	II	0 lbs K20/1000sqft
Calcium	10,318	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	622	(50)	ppm	1111111111111111						0 lbs Mg/1000sgft
Sulfur	187	(13)	ppm			IIIIIIIIII		11111111111	1111111111	0 lbs S/1000sqft
Sodium	61	(-)	ppm		l					
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI. Critical lavel is the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484045
Customer Sample ID: 889
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OL *	I I mit m							
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	249	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	30	(50)	ppm	11111111111						1.5 lbs P2O5/1000sqft
Potassium	229	(175)	ppm							0 lbs K20/1000sqft
Calcium	7,642	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	340	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm	11111111111	111111111111		11111111111	II .		0 lbs S/1000sqft
Sodium	9	(-)	ppm	1						
ron							i			
Zinc							l			
Manganese							į			
Copper							i			
Boron							I I			
imestone Requirement										0.00 lbs/1000sqft
CL —Critical layed is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483999
Customer Sample ID: 890
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	SARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.0	(6.5)	-	Slightly A	Acid					
Conductivity	422	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	42	(-)	ppm**			11111111111	111111111			0 lbs N/1000sqft
Phosphorus	391	(50)	ppm				11111111111	111111111111	ШШ	0 lbs P2O5/1000sqft
Potassium	295	(175)	ppm			11111111111	11111111111	111111		0 lbs K20/1000sqft
Calcium	5,748	(180)	ppm			:	: ,			0 lbs Ca/1000sqft
Magnesium	525	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	116	(13)	ppm	1111111111111			11111111111	1111111111111	1111111	0 lbs S/1000sqft
Sodium	26	(-)	ppm	IIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL =Critical level is the point w	which no add	itional nu	triont (ovolue	lina nitrata	N co	dium on	d condi	otivity)	ic rocom	mondod **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484046 Customer Sample ID: 891 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.2	(6.5)	-	Slightly	Alkaline					
Conductivity	305	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**			Ш				0.5 lbs N/1000sqft
Phosphorus	299	(50)	ppm	111111111111		IIIIIIIIII		11111111111	IIII	0 lbs P2O5/1000sqft
Potassium	268	(175)	ppm					11111		0 lbs K20/1000sqft
Calcium	4,603	(180)	ppm	11111111111				IIIII		0 lbs Ca/1000sqft
/lagnesium	420	(50)	ppm	11111111111		IIIIIIIIIII			l	0 lbs Mg/1000sgft
Sulfur	40	(13)	ppm	11111111111	111111111111			11111111111		0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484047 Customer Sample ID: 892 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	450	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	107	(-)	ppm**						II .	0 lbs N/1000sqft
Phosphorus	18	(50)	ppm							2.5 lbs P2O5/1000sqft
Potassium	266	(175)	ppm					11111		0 lbs K20/1000sqft
Calcium	28,034	(180)	ppm					(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
Magnesium	218	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	29	(13)	ppm					111111		0 lbs S/1000sqft
Sodium	30	(-)	ppm	IIIIIII						
ron										
Zinc								·		
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484134
Customer Sample ID: 893
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	202	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	24	(50)	ppm				1			2 lbs P2O5/1000sqft
Potassium	195	(175)	ppm		111111111111)		0 lbs K20/1000sqft
Calcium	24,320	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	252	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	24	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484000
Customer Sample ID: 894
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKUEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly A	lkaline					
Conductivity	183	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	11111111111						1 lbs N/1000sqft
Phosphorus	330	(50)	ppm	1111111111111				111111111111	111111	0 lbs P2O5/1000sqft
Potassium	137	(175)	ppm	1111111111111	1111111111		1111111			0.8 lbs K20/1000sqft
Calcium	8,428	(180)	ppm	1111111111111					II	0 lbs Ca/1000sqft
Magnesium	380	(50)	ppm	1111111111111						0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	1111111111111				11111		0 lbs S/1000sqft
Sodium	16	(-)	ppm	III						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484001 Customer Sample ID: 895 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.8	(6.5)	-	Mod. Al	kaline					
Conductivity	225	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	265	(50)	ppm	IIIIIIIIII			111111111111	111111111111111111111111111111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	323	(175)	ppm				111111111111	וווווון		0 lbs K20/1000sqft
Calcium	6,242	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	296	(50)	ppm	1111111111			111111111111	111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	1111111111				11111		0 lbs S/1000sqft
Sodium	42	(-)	ppm	ШШШ						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484002 Customer Sample ID: 896 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

7.8 218 3 308 282 6,847	(6.5) (-) (-) (50) (175)	Units - umho/cm ppm** ppm	Mod. All None	VLow kaline	Low	Mod	High	VHigh	Excess.
218 3 308 282	(-) (-) (50)	umho/cm ppm**	None II	kaline					
3 308 282	(-) (50)	ppm**	II						
308 282	(50)		:	:		CL	*		Fertilizer Recommended
282		maa							1.3 lbs N/1000sqft
	(175)	۳۳۰۰۰				11111111111		Ш	0 lbs P2O5/1000sqft
6,847	()	ppm	1111111111		1111111111		IIIII		0 lbs K20/1000sqft
	(180)	ppm	1111111111						0 lbs Ca/1000sqft
429	(50)	ppm	1111111111						0 lbs Mg/1000sgft
27	(13)	ppm	1111111111	111111111111	11111111111	11111111111	IIIII		0 lbs S/1000sqft
17	(-)	ppm	Ш						
						i			
									0.00 lbs/1000sqft
	17	17 (-)	17 (-) ppm	17 (-) ppm III	17 (-) ppm III	17 (-) ppm II	17 (-) ppm III	17 (-) ppm II	17 (-) ppm II

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484003 Customer Sample ID: 897

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.2	(6.5)	-	Slightly	Alkaline					
Conductivity	269	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	321	(50)	ppm				111111111111	111111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	343	(175)	ppm	1111111111		11111111111	11111111111	1111111111		0 lbs K20/1000sqft
Calcium	4,554	(180)	ppm	1111111111						0 lbs Ca/1000sqft
Magnesium	357	(50)	ppm	1111111111			11111111111			0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm	1111111111			11111111111	11111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	ШШ						
ron								l		
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
21 0 22 11 12 11 13								(* *())		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483936
Customer Sample ID: 898
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	5.7	(6.5)	-	Mod. Acid						
Conductivity	225	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	61	(50)	ppm		IIIIIIIII	IIIIIIIIIII	шшц	III		0 lbs P2O5/1000sqft
Potassium	146	(175)	ppm	1111111111111111	ШШ	IIIIIIIIII	111111111			0.6 lbs K20/1000sqft
Calcium	1,835	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	367	(50)	ppm	111111111111111	ШШ	IIIIIIIIII	111111111111			0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm	111111111111111111111111111111111111111	111111111		1111111111	IIIIII		0 lbs S/1000sqft
Sodium	344	(-)	ppm	111111111111111111111111111111111111111	ШШ	ШШ				
ron										
linc							l ¦			
/langanese							į			
Copper							i			
Boron							!			
imestone Requirement										30.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484048
Customer Sample ID: 899
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKUEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	222	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	71	(50)	ppm				,,,,,,,,,,,			0 lbs P2O5/1000sqft
Potassium	245	(175)	ppm	11111111111	111111111111		11111111111	III 📗		0 lbs K20/1000sqft
Calcium	8,757	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	380	(50)	ppm	11111111111				1111111111		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111			11111111111	III		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							ľ			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483937
Customer Sample ID: 903
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	245	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
Nitrate-N	19	(-)	ppm**	11111111111		Ш				0.5 lbs N/1000sqft
Phosphorus	247	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	402	(175)	ppm							0 lbs K20/1000sqft
Calcium	5,259	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	409	(50)	ppm	11111111111			11111111111	mmi		0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm				111111111111			0 lbs S/1000sqft
Sodium	355	(-)	ppm							
Iron										
Zinc										
Manganese										
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w		100				11		\ .	· ·	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484004
Customer Sample ID: 904
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. Alka	aline					
328	(-)	umho/cm	None			CL	*		Fertilizer Recommended
8	(-)	ppm**	1111111						1.1 lbs N/1000sqft
71	(50)	ppm				шш			0 lbs P2O5/1000sqft
245	(175)	ppm		1111111111			Ш		0 lbs K20/1000sqft
8,048	(180)	ppm							0 lbs Ca/1000sqft
568	(50)	ppm		1111111111			IIIIIIIII	II	0 lbs Mg/1000sgft
21	(13)	ppm					11111		0 lbs S/1000sqft
25	(-)	ppm	111111						
						i			
						I			
						i			
						i			
						I I			
									0.00 lbs/1000sqft
	7.9 328 8 71 245 8,048 568 21	Results CL* 7.9 (6.5) 328 (-) 8 (-) 71 (50) 245 (175) 8,048 (180) 568 (50) 21 (13)	Results CL* Units 7.9 (6.5) - 328 (-) umho/cm 8 (-) ppm** 71 (50) ppm 245 (175) ppm 8,048 (180) ppm 568 (50) ppm 21 (13) ppm	Results CL* Units ExLow 7.9 (6.5) - Mod. Alka 328 (-) umho/cm None 8 (-) ppm** IIIIIII 71 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 7.9 (6.5) - Mod. Alkaline Mod. Alkaline 328 (-) umho/cm None 8 (-) ppm*** IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484005 Customer Sample ID: 906 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alka	line					
Conductivity	253	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	48	(-)	ppm**					l		0 lbs N/1000sqft
Phosphorus	321	(50)	ppm	111111111111111			1111111111 			0 lbs P2O5/1000sqft
Potassium	157	(175)	ppm				mmm			0.4 lbs K20/1000sqft
Calcium	11,951	(180)	ppm	111111111111111111111111111111111111111					II	0 lbs Ca/1000sqft
/lagnesium	620	(50)	ppm	111111111111111			i i i i i i i i i i i i i i i i i i i		II	0 lbs Mg/1000sgft
Sulfur	47	(13)	ppm	1111111111111111					l	0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron										
Zinc Zinc							!			
/langanese							i			
Copper							i			
Boron										
imestone Requirement								·		0.00 lbs/1000sqft
-										
Cl. Critical layed in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483970
Customer Sample ID: 908
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

8.1 402 14 308	(6.5) (-) (-) (50)	umho/cm	Mod. Alka	VLow aline	Low	Mod	High	VHigh	Excess.
402 14 308	(-) (-)	umho/cm	None	aline					
14 308	(-)								
308		ppm**	1			CI	*		Fertilizer Recommended
	(50)		11111111111111	IIIIII					0.8 lbs N/1000sqft
005	(50)	ppm				11111111111	11111111111	IIIIII	0 lbs P2O5/1000sqft
905	(175)	ppm	1111111111111			11111111111	mmi	II	0 lbs K20/1000sqft
14,628	(180)	ppm							0 lbs Ca/1000sqft
548	(50)	ppm	11111111111111				11111111111	II	0 lbs Mg/1000sgft
212	(13)	ppm							0 lbs S/1000sqft
66	(-)	ppm	11111111111111	III					
									0.00 lbs/1000sqft
	905 14,628 548 212 66	905 (175) 14,628 (180) 548 (50) 212 (13) 66 (-)	905 (175) ppm 14,628 (180) ppm 548 (50) ppm 212 (13) ppm 66 (-) ppm	905 (175) ppm	905 (175) ppm	905 (175) ppm	905 (175) ppm	905 (175) ppm	905 (175) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483900
Customer Sample ID: 909
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkaline					
Conductivity	168	(-)	umho/cm	None		CL	•		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**						1.4 lbs N/1000sqft
Phosphorus	468	(50)	ppm						0 lbs P2O5/1000sqft
Potassium	447	(175)	ppm		IIIIIIII	mmn	mmmķ		0 lbs K20/1000sqft
Calcium	17,788	(180)	ppm					:	0 lbs Ca/1000sqft
Magnesium	601	(50)	ppm			111111111111111111111111111111111111111	ШШЩ	l	0 lbs Mg/1000sgft
Sulfur	45	(13)	ppm		ШШ	ши	mmmi		0 lbs S/1000sqft
Sodium	47	(-)	ppm	1111111111					
Iron						i			
Zinc									
Manganese						į			
Copper						i			
Boron						I I			
Limestone Requirement									0.00 lbs/1000sqft
CI -Critical level is the point w	hich no add	itional nu	triant (avalua	ing pitrate N. sodi	ım on	d oondu	otivity) io	rocomi	mandad **nam ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484006
Customer Sample ID: 910
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKUEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.3	(6.5)	-	Mod. Alka	line					
Conductivity	246	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	31	(-)	ppm**		111111111		III			0 lbs N/1000sqft
Phosphorus	7	(50)	ppm		Ш					3.4 lbs P2O5/1000sqft
Potassium	156	(175)	ppm		111111111		iiiiiiiiiiii			0.4 lbs K20/1000sqft
Calcium	23,253	(180)	ppm	111111111111111111111111111111111111111					II	0 lbs Ca/1000sqft
Magnesium	461	(50)	ppm		111111111				l	0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm	111111111111111						0 lbs S/1000sqft
Sodium	31	(-)	ppm	1111111						
Iron										
Zinc										
Manganese							ļ			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483901 Customer Sample ID: 911 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	213	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	IIII						1.2 lbs N/1000sqft
Phosphorus	69	(50)	ppm		ШШШ		,,,,,,,,,,,	IIIII		0 lbs P2O5/1000sqft
Potassium	169	(175)	ppm		ШШШ					0.1 lbs K20/1000sqft
Calcium	10,981	(180)	ppm	11111111111	111111111111		11111111111		II	0 lbs Ca/1000sqft
Magnesium	282	(50)	ppm		111111111111			IIIIII		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	11111111111			11111111111	III		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
Iron										
Zinc										
Manganese							i			
Copper							ľ			
Boron							ŀ			
Limestone Requirement										0.00 lbs/1000sqft
CL Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484049 Customer Sample ID: 912

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	8.1	(6.5)	-	Mod. All		LOW	WOO	підіі	vnigii	Excess.
Conductivity	226		umho/cm	None	Kaiirie					Fertilizer Recommended
Nitrate-N		(-)		II			CL	*		
	4	(-)	ppm**							1.3 lbs N/1000sqft
Phosphorus	52	(50)	ppm				1111111111111111			0 lbs P2O5/1000sqft
Potassium	164	(175)	ppm				11111111111			0.2 lbs K20/1000sqft
Calcium	6,543	(180)	ppm				HIIIIIII	:	ı	0 lbs Ca/1000sqft
Magnesium	345	(50)	ppm				111111111111111111111111111111111111111			0 lbs Mg/1000sgft
Sulfur	12	(13)	ppm				11111111111			0.25 lbs S/1000sqft
Sodium	9	(-)	ppm	I						
ron							i			
Zinc										
Vlanganese							!			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484007 Customer Sample ID: 913 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	aline					
Conductivity	213	(-)	umho/cm	None			С	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**		IIIIII					0.8 lbs N/1000sqft
Phosphorus	131	(50)	ppm				111111111111	111111111111111111111111111111111111111	II	0 lbs P2O5/1000sqft
Potassium	217	(175)	ppm		1111111111	11111111111	111111111111	וו		0 lbs K20/1000sqft
Calcium	8,200	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	386	(50)	ppm	1111111111111			111111111111			0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm				111111111111	111111		0 lbs S/1000sqft
Sodium	16	(-)	ppm	III						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel is the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483971 Customer Sample ID: 914 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

T.9 (6.5)	Crop Grown: G	ARDEN			
Conductivity	Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
Section Sect	рН	7.9	(6.5)	-	Mod. Alkaline
Phosphorus 25 (50) ppm	Conductivity	480	(-)	umho/cm	Slight CL. Fertilizer Recommended
Potassium	Nitrate-N	35	(-)	ppm**	
Calcium 9,090 (180) ppm	Phosphorus	25	(50)	ppm	
Magnesium 226 (50) ppm IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	437	(175)	ppm	
Sulfur 17 (13) ppm	Calcium	9,090	(180)	ppm	
Sodium 17 (-) ppm III	Magnesium	226	(50)	ppm	
ron Linc Manganese Copper Boron	Sulfur	17	(13)	ppm	
Inc Manganese Copper Boron	Sodium	17	(-)	ppm	
Manganese Copper Boron	Iron				
Copper Soron	Zinc				
Boron ¦	Manganese				
	Copper				
Limestone Requirement 0.00 lbs/1000sqft	Boron				
	Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483938
Customer Sample ID: 915
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	269	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Phosphorus	53	(50)	ppm				11111111111	ı		0 lbs P2O5/1000sqft
Potassium	421	(175)	ppm		111111111111		11111111111	шшш		0 lbs K20/1000sqft
Calcium	7,610	(180)	ppm			:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:	I	0 lbs Ca/1000sqft
Magnesium	228	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	12	(13)	ppm				11111111111			0.25 lbs S/1000sqft
Sodium	321	(-)	ppm		111111111111	IIIIIII				
Iron							ľ			
Zinc							ľ			
Manganese							ļ			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w	hich no odd	itional nu	triont /ovolue	lina nitrot	0 N 000	dium on	d condu	otivity) i	rocom	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484061
Customer Sample ID: 916
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	206	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
litrate-N	15	(-)	ppm**							0.7 lbs N/1000sqft
hosphorus	91	(50)	ppm			IIIIIIIIII			l	0 lbs P2O5/1000sqft
otassium	216	(175)	ppm	11111111111		IIIIIIIIII		ון ון		0 lbs K20/1000sqft
Calcium	6,447	(180)	ppm	11111111111					l	0 lbs Ca/1000sqft
/lagnesium	256	(50)	ppm			IIIIIIIIII		111111		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	15	(-)	ppm	Ш						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CI. Critical laval is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484062 Customer Sample ID: 917 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow VL	.ow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. Alkaline	е					
200	(-)	umho/cm	None			CI	*		Fertilizer Recommended
8	(-)	ppm**	1111111						1.1 lbs N/1000sqft
188	(50)	ppm		IIIIII			11111111111	Ш	0 lbs P2O5/1000sqft
199	(175)	ppm		Шф)		0 lbs K20/1000sqft
5,499	(180)	ppm							0 lbs Ca/1000sqft
260	(50)	ppm		IIIIII			111111		0 lbs Mg/1000sgft
16	(13)	ppm		IIIIII			11		0 lbs S/1000sqft
9	(-)	ppm	ı						
						i			
									0.00 lbs/1000sqft
	7.9 200 8 188 199 5,499 260 16	Results CL* 7.9 (6.5) 200 (-) 8 (-) 188 (50) 199 (175) 5,499 (180) 260 (50) 16 (13)	Results CL* Units 7.9 (6.5) - 200 (-) umho/cm 8 (-) ppm** 188 (50) ppm 199 (175) ppm 5,499 (180) ppm 260 (50) ppm 16 (13) ppm	Results CL* Units ExLow VI. 7.9 (6.5) - Mod. Alkaline 200 (-) umho/cm None 8 (-) ppm** IIIIIIII 188 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 7.9 (6.5) - Mod. Alkaline Mod. Alkaline 200 (-) umho/cm None 8 (-) ppm*** IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484008
Customer Sample ID: 918
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.4	(6.5)	-	Mod. Alk	aline					
Conductivity	129	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**		l					0.9 lbs N/1000sqft
Phosphorus	17	(50)	ppm			IIIIII				2.6 lbs P2O5/1000sqft
Potassium	191	(175)	ppm	11111111111				I		0 lbs K20/1000sqft
Calcium	26,329	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	330	(50)	ppm					IIIIIII		0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	111111111111				IIIIII		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
Iron										
Zinc										
Manganese							i			
Copper										
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483939 Customer Sample ID: 919 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	236	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**		111111111					0.7 lbs N/1000sqft
Phosphorus	86	(50)	ppm				11111111111	1111111111		0 lbs P2O5/1000sqft
Potassium	367	(175)	ppm		1111111111	IIIIIIIIII	11111111111	1111111111		0 lbs K20/1000sqft
Calcium	6,072	(180)	ppm				11111111111	111111		0 lbs Ca/1000sqft
Magnesium	289	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	13	(13)	ppm	111111111111	1111111111		11111111111			0.25 lbs S/1000sqft
Sodium	337	(-)	ppm		ШШШ	IIIIIIII				
Iron										
Zinc								·		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical level is the point w	املم مصطمئطا	itional nu	triant (avalue	ling pitroto	N ood	lium on	d oondi	otivity) i	o rocom	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483972
Customer Sample ID: 920
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alka	line					
Conductivity	219	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**			IIIIII				0.4 lbs N/1000sqft
Phosphorus	26	(50)	ppm							1.9 lbs P2O5/1000sqft
Potassium	237	(175)	ppm					III 📗		0 lbs K20/1000sqft
Calcium	7,037	(180)	ppm			1111111111		11111111111	II	0 lbs Ca/1000sqft
Magnesium	226	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm	111111111111111111111111111111111111111				II .		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
Iron								İ		
Zinc										
Manganese							į			
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484010
Customer Sample ID: 922
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	181	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
litrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
hosphorus	84	(50)	ppm	11111111111	ШШШ	IIIIIIIIII	11111111111	111111111		0 lbs P2O5/1000sqft
Potassium	221	(175)	ppm	11111111111	1111111111111	IIIIIIIIII	11111111111	וו		0 lbs K20/1000sqft
Calcium	14,241	(180)	ppm	11111111111	111111111111		11111111111	(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	407	(50)	ppm	11111111111	111111111111	IIIIIIIIII			l .	0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111	111111111111		11111111111	11111		0 lbs S/1000sqft
Sodium	36	(-)	ppm	1111111						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron										
imestone Requirement				•						0.00 lbs/1000sqft
C. Critical laval in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483940
Customer Sample ID: 923
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
ЭН	7.8	(6.5)	-	Mod. Alkaline
Conductivity	312	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	19	(-)	ppm**	
Phosphorus	98	(50)	ppm	
Potassium	336	(175)	ppm	
Calcium	16,203	(180)	ppm	
Magnesium	344	(50)	ppm	
Sulfur	29	(13)	ppm	
Sodium	333	(-)	ppm	
ron				
Zinc				
Vlanganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483941
Customer Sample ID: 924
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
Н	7.7	(6.5)	-	Mod. Alkaline
Conductivity	393	(-)	umho/cm	
Nitrate-N	32	(-)	ppm**	
Phosphorus	151	(50)	ppm	
Potassium	567	(175)	ppm	
Calcium	10,460	(180)	ppm	
Magnesium	425	(50)	ppm	
Sulfur	23	(13)	ppm	
Sodium	328	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrate NI codium and conductivity) is recommended ***prop prof/er

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484011 Customer Sample ID: 925 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alkal	ine					
Conductivity	115	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	58	(50)	ppm				mmuni¢	II		0 lbs P2O5/1000sqft
Potassium	131	(175)	ppm							1 lbs K20/1000sqft
Calcium	14,634	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	351	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm				mm	IIIII		0 lbs S/1000sqft
Sodium	25	(-)	ppm	111111						
Iron							i			
Zinc							-			
Manganese							!			
Copper							į			
Boron							· · · · · · · · · ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484012 Customer Sample ID: 926 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	410	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	53	(50)	ppm		ШШШ		шшц	ı		0 lbs P2O5/1000sqft
Potassium	411	(175)	ppm		1111111111111		11111111111		ı	0 lbs K20/1000sqft
Calcium	13,735	(180)	ppm	11111111111	111111111111		11111111111		II	0 lbs Ca/1000sqft
/lagnesium	303	(50)	ppm					IIIIIII		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm	11111111111			шшш	IIIII		0 lbs S/1000sqft
Sodium	30	(-)	ppm	111111						
ron										
Zinc Zinc										
Manganese										
Copper							i			
Boron							;			
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical laval is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483942
Customer Sample ID: 927
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	282	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	26	(50)	ppm			IIIIIIIIII)			1.9 lbs P2O5/1000sqft
Potassium	285	(175)	ppm	11111111111				111111		0 lbs K20/1000sqft
Calcium	10,280	(180)	ppm	111111111111		IIIIIIIIII			I	0 lbs Ca/1000sqft
Magnesium	342	(50)	ppm			IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	53	(13)	ppm	111111111111				111111111 <u>(</u>	I	0 lbs S/1000sqft
Sodium	346	(-)	ppm	11111111111		ШШ				
Iron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
Limestone Requirement								·	·	0.00 lbs/1000sqft
*CL -Critical lovel is the point w					N	ı.		.: \ ·		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484063 Customer Sample ID: 928 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
ЭН	7.2	(6.5)	-	Slightly Alkaline
Conductivity	552	(-)	umho/cm	<u> </u>
Nitrate-N	52	(-)	ppm**	
Phosphorus	179	(50)	ppm	
Potassium	668	(175)	ppm	
Calcium	4,163	(180)	ppm	
Magnesium	531	(50)	ppm	
Sulfur	101	(13)	ppm	
Sodium	52	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrote N andiam and analysisis is a common and at **mm market

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484064
Customer Sample ID: 930
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	5.9	(6.5)	-	Mod. Ac	id					
Conductivity	100	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	14	(50)	ppm			Ш				2.8 lbs P2O5/1000sqft
Potassium	97	(175)	ppm							1.7 lbs K20/1000sqft
Calcium	912	(180)	ppm	:			11111111111 <u>1</u>			0 lbs Ca/1000sqft
Magnesium	131	(50)	ppm	1111111111)))))))))))	III		0 lbs Mg/1000sgft
Sulfur	7	(13)	ppm	1111111111		IIIIIIIII				0.5 lbs S/1000sqft
Sodium	10	(-)	ppm	ı						
ron							· ·			
Zinc							- :			
Vlanganese							į			
Copper							i			
Boron							<u>'</u>			
Limestone Requirement										10.00 lbs/1000sqft
CL -Critical level is the point w	املم مصطمئطا،	litianal nu	triant (avalue	lina nitrat	a NI aas	م مسال	برام مرمار	~4:, :i4, :\		/

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 483943
Customer Sample ID: 931
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow V	/Low	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkalir	ne					
Conductivity	223	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	124	(50)	ppm			IIIIIIIII	mmuni¢	IIIIIIIII (I	0 lbs P2O5/1000sqft
Potassium	309	(175)	ppm		ШЩ	ШШШ	mm	111111		0 lbs K20/1000sqft
Calcium	6,421	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	367	(50)	ppm		IIIIIIIII	IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm		ШШ	IIIIIIIIII	mm	II .		0 lbs S/1000sqft
Sodium	325	(-)	ppm		ШЩ	ШШ				
Iron							i			
Zinc							- !			
Manganese							į			
Copper							i			
Boron							i i			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484135
Customer Sample ID: 932
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.7	(6.5)	-	Mod. Al	kaline					
Conductivity	392	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	199	(50)	ppm	ШШШ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mmi	II	0 lbs P2O5/1000sqft
Potassium	397	(175)	ppm	1111111111	ļ		•	1111111111		0 lbs K20/1000sqft
Calcium	11,907	(180)	ppm					(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
Magnesium	635	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		I .	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	1111111111		1111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111		0 lbs S/1000sqft
Sodium	33	(-)	ppm	ШШ						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483973 Customer Sample ID: 933 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow V	/Low	Low	Mod	High	VHigh	Excess.
Н	7.1	(6.5)	-	Neutral						
Conductivity	1,110	(-)	umho/cm	Moderate			CI			Fertilizer Recommended
Nitrate-N	66	(-)	ppm**					:		0 lbs N/1000sqft
Phosphorus	456	(50)	ppm	111111111111111111		IIIIIIIII		111111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	408	(175)	ppm		11111111	IIIIIIIII		,,,,,,,,,,,,	l	0 lbs K20/1000sqft
Calcium	9,119	(180)	ppm	111111111111111111111111111111111111111		IIIIIIIII		(111111111111	II	0 lbs Ca/1000sqft
Magnesium	743	(50)	ppm		IIIIIIII	IIIIIIIII			II .	0 lbs Mg/1000sgft
Sulfur	481	(13)	ppm	111111111111111111111111111111111111111		IIIIIIIII		11111111111	1111111111	0 lbs S/1000sqft
Sodium	48	(-)	ppm	1111111111						
ron										
Zinc										
Manganese										
Copper										
Boron							ı			
Limestone Requirement				·						0.00 lbs/1000sqft
CL -Critical layed is the point w		:::: 1		lin n niturata Ni			d d.	-41141		1 1 ++ //

^{*}CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484065 Customer Sample ID: 934 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G									
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
ρΗ	6.8	(6.5)	-	Slightly Acid					
Conductivity	989	(-)	umho/cm	Moderate		CL			Fertilizer Recommended
Nitrate-N	51	(-)	ppm**				II		0 lbs N/1000sqft
Phosphorus	468	(50)	ppm			::::::::::			0 lbs P2O5/1000sqft
Potassium	399	(175)	ppm			Harana			0 lbs K20/1000sqft
Calcium	7,013	(180)	ppm					II	0 lbs Ca/1000sqft
Magnesium	618	(50)	ppm					II	0 lbs Mg/1000sgft
Sulfur	645	(13)	ppm					111111111111	0 lbs S/1000sqft
Sodium	59	(-)	ppm	11111111111					
ron						<u> </u>			
Zinc						!			
V anganese						i			
Copper						i			
Boron									
Limestone Requirement									0.00 lbs/1000sqft
CL Critical lavel in the maint									

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484066
Customer Sample ID: 935
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. All	kaline					
436	(-)	umho/cm	None			. с	L*		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
14	(50)	ppm			Ш		l I		2.8 lbs P2O5/1000sqft
251	(175)	ppm	1111111111			111111111111	țiiii		0 lbs K20/1000sqft
10,165	(180)	ppm							0 lbs Ca/1000sqft
387	(50)	ppm	1111111111	111111111111		111111111111			0 lbs Mg/1000sgft
27	(13)	ppm							0 lbs S/1000sqft
58	(-)	ppm	1111111111	I					
							! !		
							į		
									0.00 lbs/1000sqft
	7.9 436 1 14 251 10,165 387 27	Results CL* 7.9 (6.5) 436 (-) 1 (-) 14 (50) 251 (175) 10,165 (180) 387 (50) 27 (13)	Results CL* Units 7.9 (6.5) - 436 (-) umho/cm 1 (-) ppm** 14 (50) ppm 251 (175) ppm 10,165 (180) ppm 387 (50) ppm 27 (13) ppm	Results CL* Units ExLow 7.9 (6.5) - Mod. All 436 (-) umho/cm None 1 (-) ppm** - 14 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.9 (6.5) - Mod. Alkaline 436 (-) umho/cm None 1 (-) ppm** 14 (50) ppm 251 (175) ppm 10,165 (180) ppm 387 (50) ppm 27 (13) ppm	Results CL* Units ExLow VLow Low 7.9 (6.5) - Mod. Alkaline - 436 (-) umho/cm None - 1 (-) ppm** 14 (50) ppm <	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484013 Customer Sample ID: 936 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.0	(6.5)	-	Mod. Alka	line					
326	(-)	umho/cm	None			CL	*		Fertilizer Recommended
16	(-)	ppm**			l				0.6 lbs N/1000sqft
103	(50)	ppm				mm	mmi	I	0 lbs P2O5/1000sqft
357	(175)	ppm				mmm			0 lbs K20/1000sqft
8,113	(180)	ppm							0 lbs Ca/1000sqft
726	(50)	ppm				111111111111111111111111111111111111111	mmi	ı	0 lbs Mg/1000sgft
26	(13)	ppm	11111111111111111				111111		0 lbs S/1000sqft
45	(-)	ppm	1111111111						
						i			
						1			
						į			
						i			
						!			
									0.00 lbs/1000sqft
	8.0 326 16 103 357 8,113 726 26	Results CL* 8.0 (6.5) 326 (-) 16 (-) 103 (50) 357 (175) 8,113 (180) 726 (50) 26 (13)	Results CL* Units 8.0 (6.5) - 326 (-) umho/cm 16 (-) ppm** 103 (50) ppm 357 (175) ppm 8,113 (180) ppm 726 (50) ppm 26 (13) ppm	Results CL* Units ExLow 8.0 (6.5) - Mod. Alka 326 (-) umho/cm None 16 (-) ppm** 103 (50) ppm 357 (175) ppm 8,113 (180) ppm 726 (50) ppm 26 (13) ppm	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 8.0 (6.5) - Mod. Alkaline - 326 (-) umho/cm None - 16 (-) ppm***	Results CL* Units	Results CL* Units ExLow VLow Low Mod High 8.0 (6.5) - Mod. Alkaline CL* 326 (-) umho/cm None CL* 16 (-) ppm***	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483974 Customer Sample ID: 937 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly A	Alkaline					
Conductivity	723	(-)	umho/cm	Slight			CI	*		Fertilizer Recommended
Nitrate-N	66	(-)	ppm**	111111111111				111111		0 lbs N/1000sqft
Phosphorus	138	(50)	ppm					(II	0 lbs P2O5/1000sqft
Potassium	587	(175)	ppm	111111111111	11111111111			11111111111	II	0 lbs K20/1000sqft
Calcium	8,112	(180)	ppm	111111111111						0 lbs Ca/1000sqft
Magnesium	567	(50)	ppm					//////////	II	0 lbs Mg/1000sgft
Sulfur	48	(13)	ppm	111111111111				1111111111 <u>į</u>	l	0 lbs S/1000sqft
Sodium	44	(-)	ppm	11111111						
ron										
Zinc								!		
Vlanganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483975
Customer Sample ID: 938
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	212	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	126	(50)	ppm	11111111111	111111111111		111111111111	111111111111	II	0 lbs P2O5/1000sqft
Potassium	246	(175)	ppm	1111111111	111111111111		11111111111	111		0 lbs K20/1000sqft
Calcium	7,538	(180)	ppm	11111111111	111111111111		11111111111	(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	277	(50)	ppm	11111111111	111111111111		11111111111	111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111	111111111111		11111111111	111111		0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
linc										
/langanese							i			
Copper										
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484136 Customer Sample ID: 941 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	268	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	132	(50)	ppm	11111111111	111111111111		111111111111	111111111111	I	0 lbs P2O5/1000sqft
Potassium	252	(175)	ppm	11111111111	111111111111		11111111111	11111		0 lbs K20/1000sqft
Calcium	8,014	(180)	ppm	11111111111					I	0 lbs Ca/1000sqft
Magnesium	366	(50)	ppm		111111111111		11111111111	1111111111		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111	111111111111		11111111111	111		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
lron										
Zinc										
V anganese										
Copper										
Boron							ľ			
Limestone Requirement									•	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483983
Customer Sample ID: 943
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.6	(6.5)	-	Slightly	Alkaline					
168	(-)	umho/cm	None			CI	*		Fertilizer Recommended
4	(-)	ppm**	II						1.3 lbs N/1000sqft
176	(50)	ppm	ШШШ			11111111111		Ш	0 lbs P2O5/1000sqft
113	(175)	ppm	1111111111		1111111111	1			1.4 lbs K20/1000sqft
7,725	(180)	ppm						II	0 lbs Ca/1000sqft
318	(50)	ppm	1111111111			111111111111	111111		0 lbs Mg/1000sgft
36	(13)	ppm	1111111111		1111111111	11111111111	111111111		0 lbs S/1000sqft
23	(-)	ppm	IIII						
						i			
						ľ			
									0.00 lbs/1000sqft
	7.6 168 4 176 113 7,725 318 36	Results CL* 7.6 (6.5) 168 (-) 4 (-) 176 (50) 113 (175) 7,725 (180) 318 (50) 36 (13)	Results CL* Units 7.6 (6.5) - 168 (-) umho/cm 4 (-) ppm** 176 (50) ppm 113 (175) ppm 7,725 (180) ppm 318 (50) ppm 36 (13) ppm	Results CL* Units ExLow 7.6 (6.5) - Slightly 168 (-) umho/cm None 4 (-) ppm*** II 176 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483976
Customer Sample ID: 944
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.1	(6.5)	-	Slightly /	Alkaline					
Conductivity	279	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	59	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	320	(50)	ppm				::::::::¢		111111	0 lbs P2O5/1000sqft
Potassium	181	(175)	ppm	11111111111			111111111111111111111111111111111111111	ı		0 lbs K20/1000sqft
Calcium	4,906	(180)	ppm	11111111111				IIIII		0 lbs Ca/1000sqft
Magnesium	304	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	48	(13)	ppm	11111111111					I	0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
ron							 			
Zinc							!			
Manganese							į			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL -Critical layed is the point w					N.			X		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483977
Customer Sample ID: 945
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O1 #								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	175	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**		:					0.7 lbs N/1000sqft
Phosphorus	118	(50)	ppm	111111111111					II	0 lbs P2O5/1000sqft
Potassium	239	(175)	ppm)11		0 lbs K20/1000sqft
Calcium	9,466	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	328	(50)	ppm	111111111111				1111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
Sodium	35	(-)	ppm	IIIIIII						
ron										
linc										
/langanese										
Copper										
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484137 Customer Sample ID: 946 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O1 #								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.2	(6.5)	-	Slightly /	Alkaline					
Conductivity	136	(-)	umho/cm	None			CI	<u>.</u>		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**	111111111111						0.6 lbs N/1000sqft
Phosphorus	356	(50)	ppm		ШШШ			100000	ШШ	0 lbs P2O5/1000sqft
Potassium	127	(175)	ppm	11111111111		IIIIIIIIII	111111			1.1 lbs K20/1000sqft
Calcium	4,132	(180)	ppm	11111111111			11111111111	11111		0 lbs Ca/1000sqft
/lagnesium	219	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	11111111111			11111111111	11111		0 lbs S/1000sqft
Sodium	7	(-)	ppm	ı						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 483978
Customer Sample ID: 949
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017
Printed on: 5/9/2017
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	346	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	156	(50)	ppm	111111111111			11111111111	mmmi	II	0 lbs P2O5/1000sqft
Potassium	439	(175)	ppm	11111111111			11111111111	mmi		0 lbs K20/1000sqft
Calcium	10,179	(180)	ppm	11111111111		•	: .			0 lbs Ca/1000sqft
Magnesium	553	(50)	ppm	11111111111			111111111111	mmi	l l	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	11111111111			11111111111	111111		0 lbs S/1000sqft
Sodium	29	(-)	ppm	ШШ						
ron										
Zinc										
Manganese							į			
Copper							i			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
CI - Critical lovel is the point w		! t! 1	4ml = m4 / = m = loo	Um an an leasant a	N.I.	ı.	والمحاملة	\ ·		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484068
Customer Sample ID: 950
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	298	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	III 1.2 lbs N/1000sqft
Phosphorus	168	(50)	ppm	
Potassium	240	(175)	ppm	
Calcium	10,639	(180)	ppm	
Magnesium	726	(50)	ppm	
Sulfur	28	(13)	ppm	
Sodium	33	(-)	ppm	
lron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
CL Critical leval in the point w	hich no add	itional nu	triont (ovolue	uding nitrate-N sodium and conductivity) is recommended **nnm-mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484138
Customer Sample ID: 951
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.6	(6.5)	-	Mod. Al	kaline					
Conductivity	318	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	176	(50)	ppm	1111111111			111111111111		II	0 lbs P2O5/1000sqft
Potassium	344	(175)	ppm		ļ	1111111111	111111111111	1111111111		0 lbs K20/1000sqft
Calcium	5,930	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	495	(50)	ppm	1111111111			111111111111			0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	1111111111		1111111111		111111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	IIII						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484139
Customer Sample ID: 952
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		CI *	l luita							_
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	208	(-)	umho/cm	None			CI	* .		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Phosphorus	94	(50)	ppm	11111111111					l	0 lbs P2O5/1000sqft
Potassium	252	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	4,996	(180)	ppm	11111111111			: ,			0 lbs Ca/1000sqft
/lagnesium	306	(50)	ppm	1111111111	111111111111	IIIIIIIIII	111111111111	1111111		0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm	11111111111	ШШШ	IIIIIIIIII		11		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
linc										
Manganese										
Copper										
Boron							,			
imestone Requirement				·						0.00 lbs/1000sqft
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484140
Customer Sample ID: 953
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G Analysis	ARDEN Results	CL*	Units	F	\a			10	MP.	F
			Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH	6.9	(6.5)	-	Slightly	Acid					5 (11) 5
Conductivity	76	(-)	umho/cm	None			CL*		:	Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	10	(50)	ppm				i			3.2 lbs P2O5/1000sqft
Potassium	41	(175)	ppm	1111111111						3 lbs K20/1000sqft
Calcium	564	(180)	ppm	:			IIIIIII			0 lbs Ca/1000sqft
/lagnesium	56	(50)	ppm				шшш			0 lbs Mg/1000sgft
Sulfur	3	(13)	ppm				ļ			1 lbs S/1000sqft
Sodium	3	(-)	ppm							
ron							i			
Zinc							-			
/langanese							į			
Copper							i			
3oron										
imestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484141
Customer Sample ID: 954
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	6.2	(6.5)	-	Slightly	Acid					
Conductivity	82	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
hosphorus	11	(50)	ppm		шшш	I	ļ			3.1 lbs P2O5/1000sqft
Potassium	46	(175)	ppm		ļIIIIII		!			2.9 lbs K20/1000sqft
Calcium	476	(180)	ppm		ļuuuuu		11111111111	ll .		0 lbs Ca/1000sqft
lagnesium	62	(50)	ppm	1111111111	İmmini		######################################	l		0 lbs Mg/1000sgft
Sulfur	5	(13)	ppm	1111111111	İ	l				1 lbs S/1000sqft
Sodium	3	(-)	ppm							
ron							l l			
linc							1			
/langanese							į			
Copper							i			
Boron							¦			
imestone Requirement										10.00 lbs/1000sqft
I -Critical level is the point w	hich no add	litional nu	triont (ovoluc	lina nitro	to N. cor	dium or	d condu	ctivity) i	c rocomi	monded **nom-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484142
Customer Sample ID: 955
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	6.7	(6.5)	-	Slightly	Acid					
Conductivity	96	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	7	(50)	ppm	1111111111	11111		;			3.4 lbs P2O5/1000sqft
Potassium	39	(175)	ppm	1111111111	Ш		!			3.1 lbs K20/1000sqft
Calcium	805	(180)	ppm	1111111111	111111111111		HIIIIIIIIIIIII	ı		0 lbs Ca/1000sqft
Magnesium	101	(50)	ppm	1111111111			111111111111111111111111111111111111111	II .		0 lbs Mg/1000sgft
Sulfur	5	(13)	ppm	1111111111		I	ļ			1 lbs S/1000sqft
Sodium	3	(-)	ppm							
Iron										
Zinc							- 1			
Manganese							į			
Copper							i			
Boron							1			
Limestone Requirement									·	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Austili, 1X 76767

Travis County
Laboratory Number: 484143
Customer Sample ID: 956

Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	6.1	(6.5)	-	Slightly	Acid					
Conductivity	73	(-)	umho/cm	None			CL	•		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	7	(50)	ppm	1111111111	Ш					3.4 lbs P2O5/1000sqft
Potassium	32	(175)	ppm	1111111111	Ш					3.2 lbs K20/1000sqft
Calcium	441	(180)	ppm	1111111111	111111111111		HIIIIIII	I		0 lbs Ca/1000sqft
Magnesium	70	(50)	ppm	1111111111			1000000			0 lbs Mg/1000sgft
Sulfur	3	(13)	ppm	1111111111	IIIII					1 lbs S/1000sqft
Sodium	4	(-)	ppm							
lron										
Zinc							1			
Manganese							į			
Copper							1			
Boron										
Limestone Requirement										10.00 lbs/1000sqft
OI -Critical level is the point w	hich no add	itional nu	trient (evoluc	lina nitrat	a-N soc	dium ar	d condu	ctivity) i	e recomi	mended **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484144 Customer Sample ID: 957

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.0	(6.5)	-	Neutral						
Conductivity	82	(-)	umho/cm	None			CL*			Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	9	(50)	ppm	111111111111	11111111111		-			3.2 lbs P2O5/1000sqft
Potassium	47	(175)	ppm	11111111111	ШШ		-			2.9 lbs K20/1000sqft
Calcium	595	(180)	ppm	11111111111	111111111111		1111111111111	ı		0 lbs Ca/1000sqft
Magnesium	69	(50)	ppm		111111111111		1000000			0 lbs Mg/1000sgft
Sulfur	4	(13)	ppm	11111111111						1 lbs S/1000sqft
Sodium	2	(-)	ppm							
ron										
Zinc							-			
Manganese							į			
Copper							i			
Boron							-			
Limestone Requirement										0.00 lbs/1000sqft

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484145 Customer Sample ID: 958 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.5	(6.5)	-	Slightly	Alkaline	!				
Conductivity	92	(-)	umho/cm	None			CL*			Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	8	(50)	ppm	1111111111	ļIIIIII					3.3 lbs P2O5/1000sqft
Potassium	53	(175)	ppm	1111111111	ļmmm		!			2.8 lbs K20/1000sqft
Calcium	1,045	(180)	ppm	1111111111	ļ	111111111	HIIIIIIII	II		0 lbs Ca/1000sqft
/lagnesium	94	(50)	ppm	1111111111	ļ) IIII III A	ı		0 lbs Mg/1000sgft
Sulfur	5	(13)	ppm	1111111111		Ш				0.5 lbs S/1000sqft
Sodium	4	(-)	ppm							
ron										
linc							1			
/langanese							l į			
Copper							;			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CI -Critical level is the point w	high no add	litional nu	triant (avalue	dina nitro	lo NL no	dium or	d condu	stivity () i	0 100000	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484146
Customer Sample ID: 959
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	248	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	14	(50)	ppm		111111111111	Ш				2.8 lbs P2O5/1000sqft
Potassium	184	(175)	ppm		111111111111		11111111111	ı		0 lbs K20/1000sqft
Calcium	13,345	(180)	ppm	11111111111				:	I	0 lbs Ca/1000sqft
Magnesium	102	(50)	ppm		111111111111			III		0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm		111111111111		1111111			0.25 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484050
Customer Sample ID: 960
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O1 #								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	292	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	44	(50)	ppm							0.4 lbs P2O5/1000sqft
Potassium	233	(175)	ppm							0 lbs K20/1000sqft
Calcium	17,244	(180)	ppm	111111111111			: .			0 lbs Ca/1000sqft
Magnesium	718	(50)	ppm				111111111111	mmmi	I	0 lbs Mg/1000sgft
Sulfur	47	(13)	ppm			IIIIIIIIIII	11111111111	mmi		0 lbs S/1000sqft
Sodium	84	(-)	ppm	111111111111	IIIIII					
ron										
Zinc							!			
Manganese							į			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL —Critical layed is the point w				P 24 4			_			1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483979
Customer Sample ID: 961
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	182	(-)	umho/cm	None			CL	<u>.</u>		Fertilizer Recommended
litrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	433	(50)	ppm					111111111111	ШШ	0 lbs P2O5/1000sqft
Potassium	238	(175)	ppm		111111111111	11111111111		ווון		0 lbs K20/1000sqft
Calcium	15,460	(180)	ppm	11111111111				(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	736	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm	11111111111				1111111111		0 lbs S/1000sqft
Sodium	29	(-)	ppm	111111						
ron										
Zinc										
Manganese							i			
Copper							l			
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical laval is the paint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484014
Customer Sample ID: 962
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Al	kaline					
Conductivity	208	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	151	(50)	ppm	1111111111				mmi	II	0 lbs P2O5/1000sqft
Potassium	346	(175)	ppm	1111111111		1111111111		1111111111		0 lbs K20/1000sqft
Calcium	16,701	(180)	ppm					(11111111111111111111111111111111111111	I	0 lbs Ca/1000sqft
Magnesium	369	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111111		0 lbs Mg/1000sgft
Sulfur	47	(13)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mmi		0 lbs S/1000sqft
Sodium	36	(-)	ppm	1111111						
Iron										
Zinc										
Manganese										
Copper							;			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484051 Customer Sample ID: 963 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	363	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
litrate-N	19	(-)	ppm**		1111111111	Ш				0.5 lbs N/1000sqft
Phosphorus	175	(50)	ppm				11111111111	11111111111	Ш	0 lbs P2O5/1000sqft
Potassium	317	(175)	ppm		1111111111		11111111111	1111111		0 lbs K20/1000sqft
Calcium	14,766	(180)	ppm	111111111111	11111111111		11111111111	(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	586	(50)	ppm	111111111111	11111111111		11111111111		II	0 lbs Mg/1000sgft
Sulfur	45	(13)	ppm	11111111111	1111111111			11111111111		0 lbs S/1000sqft
Sodium	66	(-)	ppm	11111111111	Ш					
ron										
linc										
/langanese							i			
Copper										
Boron							ļ			
imestone Requirement				·						0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484015
Customer Sample ID: 964
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	230	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
litrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	42	(50)	ppm		111111111111		1111111	ı		0.6 lbs P2O5/1000sqft
otassium	207	(175)	ppm	11111111111	111111111111		11111111111	II		0 lbs K20/1000sqft
Calcium	9,789	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	229	(50)	ppm	11111111111	111111111111		111111111111	11111		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm	11111111111	111111111111		11111111111	l		0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron							,			
imestone Requirement										0.00 lbs/1000sqft
Critical layed in the paint w					-					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484016 Customer Sample ID: 965 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	258	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	7	(50)	ppm		Ш					3.4 lbs P2O5/1000sqft
Potassium	289	(175)	ppm		111111111111	1111111111	111111111111	ווווון		0 lbs K20/1000sqft
Calcium	16,025	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	233	(50)	ppm		111111111111		111111111111	11111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm	11111111111			1111111			0.25 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical layed in the mainty										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484017
Customer Sample ID: 966
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN						
Analysis	Results	CL*	Units	ExLow VLow Low	Mod High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkaline			
Conductivity	833	(-)	umho/cm	Slight	CL*		Fertilizer Recommended
Nitrate-N	94	(-)	ppm**	111111111111111111111111111111111111111			0 lbs N/1000sqft
Phosphorus	569	(50)	ppm			Ш	0 lbs P2O5/1000sqft
Potassium	401	(175)	ppm	111111111111111111111111111111111111111			0 lbs K20/1000sqft
Calcium	8,571	(180)	ppm	111111111111111111111111111111111111111			0 lbs Ca/1000sqft
Magnesium	316	(50)	ppm				0 lbs Mg/1000sgft
Sulfur	290	(13)	ppm	111111111111111111111111111111111111111		IIIIIII	0 lbs S/1000sqft
Sodium	24	(-)	ppm	IIII			
Iron							
Zinc							
Manganese							
Copper							
Boron							
Limestone Requirement				·	•	•	0.00 lbs/1000sqft
*CL -Critical level is the point w	hich no add	itional nu	triont (ovelue	ag nitrata N. sadium an	d conductivity) is	rooomn	anded **nom ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484147
Customer Sample ID: 967
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. All	kaline					
348	(-)	umho/cm	None			CI	*		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
105	(50)	ppm		1111111111111			mmi	I	0 lbs P2O5/1000sqft
282	(175)	ppm		111111111111		11111111111	111111		0 lbs K20/1000sqft
9,925	(180)	ppm						I	0 lbs Ca/1000sqft
257	(50)	ppm		111111111111			111111		0 lbs Mg/1000sgft
77	(13)	ppm	11111111111			11111111111	11111111111111111	II	0 lbs S/1000sqft
75	(-)	ppm		Ш					
									0.00 lbs/1000sqft
	7.9 348 1 105 282 9,925 257 77 75	Results CL* 7.9 (6.5) 348 (-) 1 (-) 105 (50) 282 (175) 9,925 (180) 257 (50) 77 (13) 75 (-)	Results CL* Units 7.9 (6.5) - 348 (-) umho/cm 1 (-) ppm** 105 (50) ppm 282 (175) ppm 9,925 (180) ppm 77 (13) ppm 75 (-) ppm	Results CL* Units ExLow	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483981
Customer Sample ID: 968
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	253	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	34	(50)	ppm	111111111111			IIIII			1.2 lbs P2O5/1000sqft
Potassium	341	(175)	ppm	11111111111				11111111111		0 lbs K20/1000sqft
Calcium	9,809	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	235	(50)	ppm	11111111111				IIIII		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron							ı			
Limestone Requirement										0.00 lbs/1000sqft
										-

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484018 Customer Sample ID: 969 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	8.0	(6.5)	-	Mod. Alk	aline			-		
Conductivity	324	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	141	(50)	ppm	11111111111				11111111111	I	0 lbs P2O5/1000sqft
Potassium	590	(175)	ppm	11111111111				mmi	I	0 lbs K20/1000sqft
Calcium	8,588	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	646	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 483982
Customer Sample ID: 970
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	298	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
litrate-N	18	(-)	ppm**							0.5 lbs N/1000sqft
Phosphorus	154	(50)	ppm					111111111111	III	0 lbs P2O5/1000sqft
Potassium	374	(175)	ppm	11111111111	1111111111			11111111111		0 lbs K20/1000sqft
Calcium	10,212	(180)	ppm	11111111111	11111111111			(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	326	(50)	ppm		11111111111			1111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111	11111111111			11111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
linc										
/langanese										
Copper										
Boron							ļ			
imestone Requirement								·		0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484052 Customer Sample ID: 972 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	219	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	126	(50)	ppm	1111111111111			:::::::¢	mmi	I	0 lbs P2O5/1000sqft
Potassium	284	(175)	ppm				111111111111111111111111111111111111111			0 lbs K20/1000sqft
Calcium	8,203	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	205	(50)	ppm				111111111111111111111111111111111111111	IIII		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm				!!!!!!			0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron							ı			
Zinc										
Manganese							I			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484053
Customer Sample ID: 973
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	caline					
Conductivity	278	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	111	(50)	ppm	11111111111			:::::::¢		I	0 lbs P2O5/1000sqft
Potassium	272	(175)	ppm				111111111111111111111111111111111111111	IIII		0 lbs K20/1000sqft
Calcium	9,322	(180)	ppm	11111111111					I	0 lbs Ca/1000sqft
/lagnesium	346	(50)	ppm	11111111111			111111111111111111111111111111111111111			0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111				Ш		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
ron							ļ			
Zinc							!			
Manganese							į			
Copper							i i			
Boron							:			
imestone Requirement									•	0.00 lbs/1000sqft
CL -Critical layed is the point w								\ ·		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484054
Customer Sample ID: 974
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OI *	11-11-							
Analysis 	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. All	kaline					
Conductivity	216	(-)	umho/cm	None			CL	٠.		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	122	(50)	ppm				шинф	ШШЩ	I	0 lbs P2O5/1000sqft
Potassium	212	(175)	ppm		111111111111		mmn	ı		0 lbs K20/1000sqft
Calcium	11,707	(180)	ppm			:			I	0 lbs Ca/1000sqft
/lagnesium	225	(50)	ppm		111111111111		111111111111111111111111111111111111111	Ш		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm				шин	ı		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
ron							;			
linc										
Manganese							į			
Copper							¦			
Boron										
imestone Requirement				•						0.00 lbs/1000sqft
CL -Critical layel is the point w										1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484055
Customer Sample ID: 975
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	caline					
Conductivity	316	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	107	(50)	ppm	11111111111	111111111111			IIIIIIIII	II	0 lbs P2O5/1000sqft
Potassium	337	(175)	ppm	11111111111	111111111111	IIIIIIIIII	mmm	1111111111		0 lbs K20/1000sqft
Calcium	8,141	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	405	(50)	ppm		111111111111			IIIIIIIII	l	0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm		111111111111			11111		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron										
Zinc										
Manganese							į			
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484056
Customer Sample ID: 976
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alka	aline					
Conductivity	275	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	96	(50)	ppm				шш	mmmi	l	0 lbs P2O5/1000sqft
Potassium	288	(175)	ppm		1111111111					0 lbs K20/1000sqft
Calcium	6,504	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	370	(50)	ppm	111111111111				1111111111		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm					ı		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
Iron							ľ			
Zinc										
Manganese										
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484019
Customer Sample ID: 977
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.3	(6.5)	-	Mod. All	kaline					
Conductivity	177	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	33	(50)	ppm	11111111111			III			1.3 lbs P2O5/1000sqft
Potassium	231	(175)	ppm	11111111111	111111111111		11111111111	Ш		0 lbs K20/1000sqft
Calcium	20,320	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	292	(50)	ppm	11111111111	111111111111		11111111111	111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111			11111111111	11111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement								,		0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484020 Customer Sample ID: 978 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	191	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	11	(50)	ppm	11111111111						3.1 lbs P2O5/1000sqft
Potassium	174	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	21,848	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	315	(50)	ppm	11111111111		IIIIIIIIII		1111111		0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm			IIIIIIIIII	11111111111	111111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484021 Customer Sample ID: 979 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	203	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	HHHHH						1 lbs N/1000sqft
Phosphorus	172	(50)	ppm	11111111111				111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	275	(175)	ppm					11111		0 lbs K20/1000sqft
Calcium	10,658	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	235	(50)	ppm					IIIII		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	23	(-)	ppm	IIII						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484022 Customer Sample ID: 980 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Nitrate-N 0 (-) ppm** 1.4 lbs N/1000sqft Phosphorus 7 (50) ppm	Crop Grown: 0	JAKUEN									
Conductivity	nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Nitrate-N	Н	8.3	(6.5)	-	Mod. All	kaline					
Phosphorus 7 (50) ppm	onductivity	142	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Potassium 151 (175) ppm	litrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Calcium 28,303 (180) ppm	hosphorus	7	(50)	ppm		Ш					3.4 lbs P2O5/1000sqft
Magnesium 461 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	otassium	151	(175)	ppm	11111111111			11111111			0.5 lbs K20/1000sqft
Sulfur 30 (13) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	alcium	28,303	(180)	ppm	11111111111			11111111111	(111111111111	II	0 lbs Ca/1000sqft
Sodium 30 (-) ppm IIIIII	lagnesium	461	(50)	ppm		111111111111				I	0 lbs Mg/1000sgft
Iron Zinc Manganese Copper Boron	ulfur	30	(13)	ppm	11111111111			11111111111	111111		0 lbs S/1000sqft
Zinc Manganese Copper Boron	odium	30	(-)	ppm	1111111						
Manganese Copper Boron	on										
Copper Boron	inc										
Boron Control	langanese							i			
	opper										
Limestone Requirement 0.00 lbs/1000sqft	oron										
	imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484023
Customer Sample ID: 981
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.2	(6.5)	-	Slightly	Alkaline					
Conductivity	239	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	16	(-)	ppm**	11111111111		I				0.6 lbs N/1000sqft
Phosphorus	288	(50)	ppm		111111111111			111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	188	(175)	ppm		111111111111	11111111111)		0 lbs K20/1000sqft
Calcium	5,990	(180)	ppm				:			0 lbs Ca/1000sqft
Magnesium	486	(50)	ppm		111111111111				I	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm		111111111111			111111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484097
Customer Sample ID: 982
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.6	(6.5)	-	Slightly	Alkaline)				
Conductivity	495	(-)	umho/cm	Slight			CI			Fertilizer Recommended
Nitrate-N	86	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	119	(50)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		II	0 lbs P2O5/1000sqft
Potassium	235	(175)	ppm		11111111111		•)11		0 lbs K20/1000sqft
Calcium	10,407	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	252	(50)	ppm	11111111111	11111111111			111111		0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm	11111111111			11111111111	111111		0 lbs S/1000sqft
Sodium	24	(-)	ppm	IIII						
ron										
Zinc										
Vlanganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484098 Customer Sample ID: 983 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkalin	•				
Conductivity	156	(-)	umho/cm	None		CL			Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111					1.1 lbs N/1000sqft
Phosphorus	185	(50)	ppm			######################################		Ш	0 lbs P2O5/1000sqft
Potassium	117	(175)	ppm			in ¦			1.3 lbs K20/1000sqft
Calcium	4,511	(180)	ppm	111111111111111111111111111111111111111		HIIIIIIII	Ш		0 lbs Ca/1000sqft
Magnesium	206	(50)	ppm			#mmm#	Ш		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm			111111111111111111111111111111111111111	Ш		0 lbs S/1000sqft
Sodium	16	(-)	ppm	III					
ron									
Zinc						!			
Vlanganese						į			
Copper						;			
Boron									
Limestone Requirement				•					0.00 lbs/1000sqft
CL -Critical level is the point w	hich no add	itional nu	triant (avalue	ding nitrate N co	dium a	ad condu	otivity) i	c rocomi	mandad **nam ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484099
Customer Sample ID: 984
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.0	(6.5)	-	Slightly A	cid					
Conductivity	588	(-)	umho/cm	Slight			С			Fertilizer Recommended
Nitrate-N	67	(-)	ppm**			IIIIIIIIII		111111		0 lbs N/1000sqft
Phosphorus	489	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	584	(175)	ppm			IIIIIIIIII		ļuunui ļ	II	0 lbs K20/1000sqft
Calcium	7,296	(180)	ppm					(11111111111	ll .	0 lbs Ca/1000sqft
Magnesium	796	(50)	ppm						II .	0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm					1111111111		0 lbs S/1000sqft
Sodium	24	(-)	ppm	IIII						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
*CL -Critical level is the point w	امام مصطمناه	بيم لممينة:	triant /avalue	lina nitroto	NI aaa	lium on	بام م م ما ر			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484101
Customer Sample ID: 985
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkal	line					
Conductivity	316	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II .						1.3 lbs N/1000sqft
Phosphorus	227	(50)	ppm						III	0 lbs P2O5/1000sqft
Potassium	345	(175)	ppm		ШШ		mmm	111111111		0 lbs K20/1000sqft
Calcium	10,008	(180)	ppm		:			:	ı	0 lbs Ca/1000sqft
Magnesium	294	(50)	ppm				mmi	Ш		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm				шшф			0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
ron							;			
Zinc							:			
Vlanganese							į			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w	hich no add	itional nu	triont (ovoluc	lina nitrata I	N cod	ium on	d condu	otivity) ic	rocomr	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484102 Customer Sample ID: 986 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	288	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111111						1 lbs N/1000sqft
Phosphorus	21	(50)	ppm				l			2.2 lbs P2O5/1000sqft
Potassium	304	(175)	ppm	111111111111				1111111		0 lbs K20/1000sqft
Calcium	16,669	(180)	ppm		:				II	0 lbs Ca/1000sqft
Magnesium	252	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm					111		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
ron										
Zinc										
Vlanganese							į			
Copper							i			
Boron							 			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484024 Customer Sample ID: 987 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	Results	CL*	Units	F					\ar	F
nalysis	8.4		Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH Dana kantinitan	-	(6.5)	-	Mod. All	kaline					Facilities Bases and declar
Conductivity	191	(-)	umho/cm	None		:	CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	24	(50)	ppm							2.1 lbs P2O5/1000sqft
Potassium	245	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	18,070	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	442	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	11111111111			11111111111	111111111		0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
•										·
CL -Critical lovel is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484103
Customer Sample ID: 988
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	398	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	17	(-)	ppm**							0.6 lbs N/1000sqft
Phosphorus	120	(50)	ppm		ШШШ				II	0 lbs P2O5/1000sqft
Potassium	287	(175)	ppm	11111111111	111111111111		11111111111	111111		0 lbs K20/1000sqft
Calcium	8,001	(180)	ppm	11111111111			11111111111	(11111111111)	II	0 lbs Ca/1000sqft
/lagnesium	412	(50)	ppm	11111111111				//////////	l	0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111			11111111111	11111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron										
linc										
/langanese										
Copper										
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft
<u>-</u>										
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484148
Customer Sample ID: 989
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	398	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	136	(50)	ppm	11111111111			11111111111		II	0 lbs P2O5/1000sqft
Potassium	208	(175)	ppm	1111111111			100000	II		0 lbs K20/1000sqft
Calcium	6,228	(180)	ppm	1111111111			11111111111	IIIIIIIII		0 lbs Ca/1000sqft
/lagnesium	641	(50)	ppm	1111111111	111111111111		11111111111		II	0 lbs Mg/1000sgft
Sulfur	137	(13)	ppm	1111111111			11111111111			0 lbs S/1000sqft
Sodium	35	(-)	ppm	1111111						
ron										
linc							!			
/langanese							i			
Copper							l			
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft
-										
C. Critical laval is the point w					-					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484149
Customer Sample ID: 990
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline)				
Conductivity	305	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	26	(-)	ppm**	11111111111			1			0.2 lbs N/1000sqft
Phosphorus	380	(50)	ppm	11111111111				111111111111111111111111111111111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	268	(175)	ppm	11111111111				11111		0 lbs K20/1000sqft
Calcium	8,792	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	513	(50)	ppm	11111111111						0 lbs Mg/1000sgft
Sulfur	127	(13)	ppm	11111111111				111111111111	111111111	0 lbs S/1000sqft
Sodium	29	(-)	ppm	111111						
Iron								i		
Zinc								l		
Manganese										
Copper								i		
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel in the maint w										1 1 11 11

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484150
Customer Sample ID: 991
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
ρΗ	7.4	(6.5)	-	Slightly Alkaline
Conductivity	401	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	61	(-)	ppm**	
Phosphorus	45	(50)	ppm	
Potassium	437	(175)	ppm	
Calcium	14,983	(180)	ppm	
Magnesium	469	(50)	ppm	
Sulfur	38	(13)	ppm	
Sodium	23	(-)	ppm	
ron				
Zinc				
Manganese				
Copper				
Boron				
imestone Requirement				0.00 lbs/1000sqft
CL Critical layed in the point w	hich no add	itional nu	triant (avalue	uding nitrate.N. sodium and conductivity) is recommended. **nnm-mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484104
Customer Sample ID: 992
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OI *	1116							
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	303	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	83	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	336	(175)	ppm							0 lbs K20/1000sqft
Calcium	14,327	(180)	ppm			•	: .		II	0 lbs Ca/1000sqft
Magnesium	334	(50)	ppm				11111111111			0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm		111111111111		11111111111	IIIII		0 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
ron							· ·			
Zinc										
Manganese							į			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL -Critical layed is the point w			tul t / l	line and the second	- NI		al al	-4114. A 1		1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484105 Customer Sample ID: 993 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		CI *	Unito							_
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.4	(6.5)	-	• •	Alkaline					
Conductivity	171	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	I						1.3 lbs N/1000sqft
Phosphorus	816	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	214	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	5,969	(180)	ppm				:			0 lbs Ca/1000sqft
/lagnesium	375	(50)	ppm			IIIIIIIIII	11111111111			0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm	11111111111		IIIIIIIIII		111111		0 lbs S/1000sqft
Sodium	30	(-)	ppm	111111						
ron										
Zinc								l		
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical lavel is the point w							_			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484106
Customer Sample ID: 994
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

8.1 263 4 43 236	(6.5) (-) (-) (50)	umho/cm	Mod. All None	VLow kaline	Low	Mod	High	VHigh	Excess.
263 4 43	(-) (-)		None	kaline					
43	(-)								
43		ppm**	11			CL	*		Fertilizer Recommended
	(50)		111						1.3 lbs N/1000sqft
236		ppm				1111111			0.5 lbs P2O5/1000sqft
	(175)	ppm	11111111111			11111111111	III		0 lbs K20/1000sqft
6,999	(180)	ppm	:	•	•	: .		II	0 lbs Ca/1000sqft
263	(50)	ppm	1111111111			11111111111	IIIII		0 lbs Mg/1000sgft
12	(13)	ppm				11111111111			0.25 lbs S/1000sqft
13	(-)	ppm	II						
						i			
						i			
						ľ			
									0.00 lbs/1000sqft
	6,999 263 12 13	6,999 (180) 263 (50) 12 (13) 13 (-)	6,999 (180) ppm 263 (50) ppm 12 (13) ppm 13 (-) ppm	6,999 (180) ppm	6,999 (180) ppm	6,999 (180) ppm	6,999 (180) ppm	6,999 (180) ppm	6,999 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 484107 Customer Sample ID: 995 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	324	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	III						1.2 lbs N/1000sqft
Phosphorus	50	(50)	ppm				11111111111	1		0 lbs P2O5/1000sqft
Potassium	329	(175)	ppm	111111111111	IIIIIIIIII			1111111		0 lbs K20/1000sqft
Calcium	6,780	(180)	ppm	111111111111					II	0 lbs Ca/1000sqft
Magnesium	227	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	111111111111			11111111111	III .		0 lbs S/1000sqft
Sodium	10	(-)	ppm	1						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel is the mainty										1 1 1 1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484108 Customer Sample ID: 996 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
H	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	289	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	64	(50)	ppm	11111111111			111111111111	111		0 lbs P2O5/1000sqft
Potassium	141	(175)	ppm	11111111111	111111111111		1111111			0.7 lbs K20/1000sqft
Calcium	14,617	(180)	ppm	11111111111		:	:		II	0 lbs Ca/1000sqft
Magnesium	311	(50)	ppm		111111111111			1111111		0 lbs Mg/1000sgft
Sulfur	66	(13)	ppm						II	0 lbs S/1000sqft
Sodium	17	(-)	ppm	III						
ron										
Zinc								l		
Manganese										
Copper										
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484109
Customer Sample ID: 997
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.2	(6.5)	-	Slightly	Alkaline					
270	(-)	umho/cm	None			CL	*		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
149	(50)	ppm		111111111111		11111111111	111111111111	l l	0 lbs P2O5/1000sqft
295	(175)	ppm	1111111111	111111111111			111111		0 lbs K20/1000sqft
11,471	(180)	ppm							0 lbs Ca/1000sqft
462	(50)	ppm	1111111111	111111111111			mmi	l	0 lbs Mg/1000sgft
40	(13)	ppm				11111111111	111111111		0 lbs S/1000sqft
31	(-)	ppm	1111111						
						i			
									0.00 lbs/1000sqft
	7.2 270 1 149 295 11,471 462 40	Results CL* 7.2 (6.5) 270 (-) 1 (-) 149 (50) 295 (175) 11,471 (180) 462 (50) 40 (13)	Results CL* Units 7.2 (6.5) - 270 (-) umho/cm 1 (-) ppm** 149 (50) ppm 295 (175) ppm 11,471 (180) ppm 462 (50) ppm 40 (13) ppm	Results CL* Units ExLow 7.2 (6.5) - Slightly 270 (-) umho/cm None 1 (-) ppm** - 149 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.2 (6.5) - Slightly Alkaline 270 (-) umho/cm None 1 (-) ppm** 149 (50) ppm 295 (175) ppm 11,471 (180) ppm 462 (50) ppm 40 (13) ppm	Results CL* Units ExLow VLow Low	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484110
Customer Sample ID: 998
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	340	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**		IIIII					0.8 lbs N/1000sqft
Phosphorus	48	(50)	ppm	11111111111						0.1 lbs P2O5/1000sqft
Potassium	315	(175)	ppm	11111111111				IIIIIII		0 lbs K20/1000sqft
Calcium	10,780	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	266	(50)	ppm	11111111111				IIIIII		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111			шшш	IIIII		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
Iron							ļ			
Zinc							I			
Manganese							i			
Copper							i			
Boron							I I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484069 Customer Sample ID: 999 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	187	(-)	umho/cm	None			CI	<u>.</u>		Fertilizer Recommended
litrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	32	(50)	ppm		ШШШ	IIIIIIIIII	III	 		1.4 lbs P2O5/1000sqft
Potassium	185	(175)	ppm	11111111111		IIIIIIIIII	11111111111	ן		0 lbs K20/1000sqft
Calcium	14,260	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	393	(50)	ppm			IIIIIIIIII		1111111111		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm		1111111111111	IIIIIIIIII	11111111111	Ш		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
C. Critical laval is the point w					·					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484070
Customer Sample ID: 1000
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	212	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	177	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	146	(175)	ppm	11111111111			111111111			0.6 lbs K20/1000sqft
Calcium	6,253	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	285	(50)	ppm				111111111111	111111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm				111111111111	11111		0 lbs S/1000sqft
Sodium	15	(-)	ppm	Ш						
Iron										
Zinc								l		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel in the maint w										1 1 11 11

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484071
Customer Sample ID: 1001
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

ARDEN	O								
		Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
		-	Mod. Alk	caline					
309	(-)	umho/cm	None			CI	*		Fertilizer Recommended
7	(-)	ppm**							1.1 lbs N/1000sqft
67	(50)	ppm							0 lbs P2O5/1000sqft
327	(175)	ppm							0 lbs K20/1000sqft
9,023	(180)	ppm	: :		•	:		II	0 lbs Ca/1000sqft
340	(50)	ppm				:			0 lbs Mg/1000sgft
20	(13)	ppm	11111111111			1111111111111	11111		0 lbs S/1000sqft
13	(-)	ppm	II						
						i			
									0.00 lbs/1000sqft
	7.8 309 7 67 327 9,023 340 20	Results CL* 7.8 (6.5) 309 (-) 7 (-) 67 (50) 327 (175) 9,023 (180) 340 (50) 20 (13)	Results CL* Units 7.8 (6.5) - 309 (-) umho/cm 7 (-) ppm** 67 (50) ppm 327 (175) ppm 9,023 (180) ppm 340 (50) ppm 20 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. Alf 309 (-) umho/cm None 7 (-) ppm*** IIIIII 67 (50) ppm IIIIIIIIIII 327 (175) ppm IIIIIIIIIIII 9,023 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 309 (-) umho/cm None 7 (-) ppm** IIIIII 67 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 309 (-) umho/cm None - 7 (-) ppm*** IIIIII 67 (50) ppm	Results CL* Units ExLow VLow Low Mod 7.8 (6.5) - Mod. Alkaline -	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484072 Customer Sample ID: 1002 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	352	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	193	(50)	ppm	1111111111111					II	0 lbs P2O5/1000sqft
Potassium	527	(175)	ppm		1111111111			mmmi		0 lbs K20/1000sqft
Calcium	10,850	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	417	(50)	ppm	111111111111				mmmi		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm					Ш		0 lbs S/1000sqft
Sodium	36	(-)	ppm	1111111						
Iron							ľ			
Zinc										
Manganese							I			
Copper							i			
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484073
Customer Sample ID: 1003
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	235	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	46	(50)	ppm	11111111111			111111111	l		0.3 lbs P2O5/1000sqft
Potassium	323	(175)	ppm	11111111111	111111111111		11111111111	1111111		0 lbs K20/1000sqft
Calcium	20,064	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	302	(50)	ppm	11111111111				1111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm				11111111111	111111		0 lbs S/1000sqft
Sodium	27	(-)	ppm	111111						
Iron								l		
Zinc										
Manganese										
Copper										
Boron							· ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484111
Customer Sample ID: 1004
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	375	(-)	umho/cm	None			С	_*		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**	11111111111						0.3 lbs N/1000sqft
Phosphorus	123	(50)	ppm	11111111111				,,,,,,,,,,,,	II	0 lbs P2O5/1000sqft
Potassium	713	(175)	ppm	11111111111)11111111111	II	0 lbs K20/1000sqft
Calcium	19,041	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	410	(50)	ppm	11111111111					l	0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
Sodium	29	(-)	ppm	111111						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484151
Customer Sample ID: 1006
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	168	(-)	umho/cm	None			С	*		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**		111111111111	Ш				0.5 lbs N/1000sqft
Phosphorus	252	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	169	(175)	ppm		111111111111		11111111111			0.1 lbs K20/1000sqft
Calcium	4,832	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	218	(50)	ppm		111111111111			11111		0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	11111111111				111111111		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484152
Customer Sample ID: 1007
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		CI *	l luita							_
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рΗ	8.1	(6.5)	-	Mod. Alk	kaline					
Conductivity	252	(-)	umho/cm	None			CL	<i>.</i>		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	45	(50)	ppm							0.3 lbs P2O5/1000sqft
Potassium	204	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	8,392	(180)	ppm				: .		I	0 lbs Ca/1000sqft
Magnesium	249	(50)	ppm		111111111111		111111111111111111111111111111111111111	IIIII		0 lbs Mg/1000sgft
Sulfur	53	(13)	ppm	11111111111	1111111111111		11111111111	HHHHHİ	I	0 lbs S/1000sqft
Sodium	55	(-)	ppm	11111111111	I					
lron										
Zinc										
Manganese							į			
Copper							i			
Boron										
Limestone Requirement								·		0.00 lbs/1000sqft
CL -Critical layed is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484112
Customer Sample ID: 1008
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

рН	Results 8.1	CL*	Units	ExLow	VLow	Low	Mod	Hart	V/I I:I-	F
-	8.1	/>				LOW	WOU	High	VHigh	Excess.
		(6.5)	-	Mod. All	kaline					
Conductivity	143	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	12	(50)	ppm	11111111111	111111111111	l				3 lbs P2O5/1000sqft
Potassium	193	(175)	ppm	11111111111	111111111111)		0 lbs K20/1000sqft
Calcium	9,472	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	199	(50)	ppm	11111111111	11111111111			IIIII		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm	11111111111	111111111111			11111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111						
Iron										
Zinc										
Manganese							ļ			
Copper							i			
Boron							ı			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484113
Customer Sample ID: 1009
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN					
Analysis	Results	CL*	Units	ExLow VLow Low Mo	d High VHig	gh Excess.
рН	7.6	(6.5)	-	Mod. Alkaline		
Conductivity	212	(-)	umho/cm	None	CL*	Fertilizer Recommended
Nitrate-N	20	(-)	ppm**			0.4 lbs N/1000sqft
Phosphorus	214	(50)	ppm		шфиниции	0 lbs P2O5/1000sqft
Potassium	244	(175)	ppm		IIIŅII	0 lbs K20/1000sqft
Calcium	5,074	(180)	ppm		IIIMIIII	0 lbs Ca/1000sqft
Magnesium	286	(50)	ppm		III ÅIIIII	0 lbs Mg/1000sgft
Sulfur	29	(13)	ppm		III ¢ IIIII	0 lbs S/1000sqft
Sodium	21	(-)	ppm	IIII		
Iron						
Zinc					-	
Manganese					į	
Copper					i	
Boron					1	
Limestone Requirement						0.00 lbs/1000sqft
CL -Critical layed is the point w	hich no add	itional nu	triant (avalue	og nitrate-N sodium and cor	aductivity) is rose	mmandad **nam ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484114 Customer Sample ID: 1010 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		CI *	l luito			_				_
Analysis 	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. All	kaline					
Conductivity	246	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	91	(50)	ppm						l	0 lbs P2O5/1000sqft
Potassium	245	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	11,124	(180)	ppm	: :			: ,	(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
/lagnesium	437	(50)	ppm				111111111111	mmi	l	0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm				111111111111	111111111		0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIIIII						
ron										
linc								·		
/langanese										
Copper										
Boron							,			
imestone Requirement								·		0.00 lbs/1000sqft
Cl. Critical laval in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484115
Customer Sample ID: 1011
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	252	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	ШШ						1.1 lbs N/1000sqft
Phosphorus	173	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	272	(175)	ppm	11111111111		IIIIIIIIII	111111111111111111111111111111111111111	IIII		0 lbs K20/1000sqft
Calcium	5,162	(180)	ppm	11111111111			: .			0 lbs Ca/1000sqft
Magnesium	316	(50)	ppm	11111111111		IIIIIIIIII	111111111111111111111111111111111111111			0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111		ШШШ	11111111111	Ш		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
ron										
Zinc Zinc										
Manganese							į			
Copper							i			
Boron							!			
imestone Requirement										0.00 lbs/1000sqft
CL_Critical lovel is the point w	المام ما ما ما ما	itianal nu	t-1 (l		. NI	Ľ	ر باد در د د اد	-41. da A 1		/

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484116
Customer Sample ID: 1012
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	231	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Phosphorus	79	(50)	ppm	111111111111			11111111111	1111111		0 lbs P2O5/1000sqft
Potassium	252	(175)	ppm	11111111111			11111111111	11111		0 lbs K20/1000sqft
Calcium	14,997	(180)	ppm	11111111111			11111111111	(111111111111	II	0 lbs Ca/1000sqft
Magnesium	332	(50)	ppm	11111111111			11111111111	1111111		0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm	11111111111			11111111111	1111111		0 lbs S/1000sqft
Sodium	9	(-)	ppm	ı						
Iron										
Zinc										
Manganese										
Copper							l			
Boron										
Limestone Requirement									·	0.00 lbs/1000sqft
CI -Critical layed is the point w		!#! I		Um ar ar litara ta	. NI	II	al a a sa also	-41. da A		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484117
Customer Sample ID: 1013
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	8.6	(6.5)	-	Mod. Alk	aline					
Conductivity	283	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	11111111111	III					0.8 lbs N/1000sqft
Phosphorus	58	(50)	ppm	11111111111				ll .		0 lbs P2O5/1000sqft
Potassium	253	(175)	ppm	11111111111				11111		0 lbs K20/1000sqft
Calcium	6,769	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	307	(50)	ppm					1111111		0 lbs Mg/1000sgft
Sulfur	78	(13)	ppm	11111111111				111111111111	Ш	0 lbs S/1000sqft
Sodium	7	(-)	ppm	1						
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484118
Customer Sample ID: 1014
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	342	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	12	(-)	ppm**		II					0.8 lbs N/1000sqft
hosphorus	164	(50)	ppm	111111111111					III	0 lbs P2O5/1000sqft
Potassium	369	(175)	ppm		11111111111					0 lbs K20/1000sqft
Calcium	8,827	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	225	(50)	ppm	111111111111				IIIII		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	11111111111				IIIII		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
ron										
Zinc Zinc										
/langanese							i			
Copper							l			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CI. Critical laval is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484119
Customer Sample ID: 1015
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	aline					
Conductivity	132	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	154	(50)	ppm				111111111111	111111111111111111111111111111111111111	III	0 lbs P2O5/1000sqft
Potassium	219	(175)	ppm			11111111111	111111111111	ון		0 lbs K20/1000sqft
Calcium	3,845	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	185	(50)	ppm	1111111111111			111111111111	11111		0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm				111111111111	111111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel in the maint w										t t to

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484120 Customer Sample ID: 1016 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рΗ	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	286	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	226	(50)	ppm	111111111111			11111111111	111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	471	(175)	ppm	111111111111	1111111111			111111111111	l	0 lbs K20/1000sqft
Calcium	13,494	(180)	ppm	111111111111					I	0 lbs Ca/1000sqft
Magnesium	389	(50)	ppm		11111111111		11111111111	1111111111		0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm	111111111111	11111111111		11111111111	1111111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	ШШ						
ron										
Zinc								·		
Manganese										
Copper										
Boron							ļ			
imestone Requirement								·		0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484074
Customer Sample ID: 1017
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	333	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**		1111111					0.7 lbs N/1000sqft
Phosphorus	114	(50)	ppm				,,,,,,,,,,,	mmmi	ll .	0 lbs P2O5/1000sqft
Potassium	293	(175)	ppm		1111111111		11111111111	111111		0 lbs K20/1000sqft
Calcium	6,989	(180)	ppm	1111111111111					II	0 lbs Ca/1000sqft
Magnesium	386	(50)	ppm	1111111111111						0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm				11111111111			0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484075
Customer Sample ID: 1018
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. All	kaline					
Conductivity	266	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	138	(50)	ppm	11111111111			:::::::(II	0 lbs P2O5/1000sqft
Potassium	251	(175)	ppm	11111111111	11111111111		11111111111	Ш		0 lbs K20/1000sqft
Calcium	6,399	(180)	ppm	11111111111	111111111111		11111111111	1111111111		0 lbs Ca/1000sqft
Magnesium	294	(50)	ppm		111111111111		,,,,,,,,,,,,,,,	111111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm	11111111111			1111111111	IIIII		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							I I			
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layed is the point w	12.1	141 1 ·	4	Day of the set	- NI	Ľ	والمحاجب الم	-4114. A 1		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484076
Customer Sample ID: 1019
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	Results	CL*	Units	ExLow	\/I	1	Mad	Himb	Milliant	F
Analysis	7.7		UIIIIS	Mod. All	VLow	Low	Mod	High	VHigh	Excess.
oH Dana kantinitan		(6.5)	-		kaiine					Facilities Bases and declar
Conductivity	308	(-)	umho/cm	None		:	Cl	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	20	(50)	ppm							2.3 lbs P2O5/1000sqft
Potassium	303	(175)	ppm							0 lbs K20/1000sqft
Calcium	7,221	(180)	ppm	:		•			II	0 lbs Ca/1000sqft
/lagnesium	257	(50)	ppm		111111111111			111111		0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm				11111111111	Ш		0 lbs S/1000sqft
Sodium	8	(-)	ppm	ı						
ron										
Zinc										
Manganese							i			
Copper										
Boron							I			
imestone Requirement				•						0.00 lbs/1000sqft
•										·

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484077
Customer Sample ID: 1020
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	266	(-)	umho/cm	None			. с	L*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	114	(50)	ppm						II	0 lbs P2O5/1000sqft
Potassium	205	(175)	ppm							0 lbs K20/1000sqft
Calcium	12,500	(180)	ppm					11111111111	II	0 lbs Ca/1000sqft
Magnesium	298	(50)	ppm	11111111111						0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm					1111111		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484078
Customer Sample ID: 1021
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	263	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
hosphorus	18	(50)	ppm		ШШШ	IIIIIII				2.5 lbs P2O5/1000sqft
otassium	156	(175)	ppm	11111111111						0.4 lbs K20/1000sqft
Calcium	12,661	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium (1997)	242	(50)	ppm					Ш		0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm					11		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484079
Customer Sample ID: 1022
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.5	(6.5)	-	Slightly /	Alkaline					
Conductivity	322	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	201	(50)	ppm					11111111111	IIII	0 lbs P2O5/1000sqft
Potassium	405	(175)	ppm	11111111111				mmi	l l	0 lbs K20/1000sqft
Calcium	7,433	(180)	ppm	11111111111				(11111111111)	II	0 lbs Ca/1000sqft
/lagnesium	489	(50)	ppm					//////////	l l	0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm	111111111111				1111111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II .						
ron										
Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
Chitian I laval in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484080
Customer Sample ID: 1023
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.0	(6.5)	-	Slightly	Acid					
Conductivity	2,370	(-)	umho/cm	V. High			CI			Fertilizer Recommended
Nitrate-N	48	(-)	ppm**			:	:			0 lbs N/1000sqft
Phosphorus	274	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	1286	(175)	ppm				11111111111)11111111111111111111111111111111111111	Ш	0 lbs K20/1000sqft
Calcium	5,890	(180)	ppm	11111111111		:	: .			0 lbs Ca/1000sqft
Magnesium	432	(50)	ppm				11111111111		I	0 lbs Mg/1000sgft
Sulfur	4,386	(13)	ppm	11111111111			111111111111		1111111111111	0 lbs S/1000sqft
Sodium	236	(-)	ppm	11111111111		Ш				
Iron								l		
Zinc										
Manganese										
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft
*CI -Critical level is the point w	1 . 1					r.		42 14 N		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484081
Customer Sample ID: 1024
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly /	Alkaline					
Conductivity	376	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**							0.3 lbs N/1000sqft
Phosphorus	304	(50)	ppm					11111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	180	(175)	ppm	11111111111)		0 lbs K20/1000sqft
Calcium	9,677	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	687	(50)	ppm						II .	0 lbs Mg/1000sgft
Sulfur	72	(13)	ppm	11111111111				11111111111	III	0 lbs S/1000sqft
Sodium	29	(-)	ppm	ШШ						
Iron										
Zinc								·		
Manganese							i			
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
01 0 27 11 11 11 11							1 1			1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484082
Customer Sample ID: 1025
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline)				
Conductivity	220	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	454	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111111	ШШ	0 lbs P2O5/1000sqft
Potassium	222	(175)	ppm	1111111111			•)II		0 lbs K20/1000sqft
Calcium	11,404	(180)	ppm				•		II	0 lbs Ca/1000sqft
Magnesium	302	(50)	ppm				111111111111	1111111		0 lbs Mg/1000sgft
Sulfur	39	(13)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
Iron										
Zinc								l I		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI. Critical lavel is the maint w										1 1 1 1 1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484083
Customer Sample ID: 1026
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	240	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	267	(50)	ppm				11111111111	11111111111	IIII	0 lbs P2O5/1000sqft
Potassium	201	(175)	ppm				111111111111111111111111111111111111111			0 lbs K20/1000sqft
Calcium	14,152	(180)	ppm				1000000		II	0 lbs Ca/1000sqft
Magnesium	345	(50)	ppm	1111111111			111111111111			0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm	1111111111			11111111111	IIIIIII		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc										
/langanese							į			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL -Critical layed is the point w								\ .		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484084 Customer Sample ID: 1027 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.7	(6.5)	-	Mod. Alk	caline					
Conductivity	250	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	107	(50)	ppm		111111111111			11111111111	II	0 lbs P2O5/1000sqft
Potassium	254	(175)	ppm		ШШШ			11111		0 lbs K20/1000sqft
Calcium	6,384	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	436	(50)	ppm					//////////	l	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	III						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484121 Customer Sample ID: 1028 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
o <mark>H</mark>	8.3	(6.5)		Mod. All		Low	Mod	nign	vrigh	EXCESS.
Conductivity	115	(-)	umho/cm	None	Adillie		-			Fertilizer Recommended
Nitrate-N	113	(-)	ppm**	None			CI			1.4 lbs N/1000sqft
Phosphorus	4	(50)								3.6 lbs P2O5/1000sqft
otassium	125	(175)	ppm				11111			1.1 lbs K20/1000sqft
Calcium	29,922	(173)	ppm	11111111111			:			0 lbs Ca/1000sqft
	411	` '	ppm							
Magnesium		(50)	ppm						•	0 lbs Mg/1000sgft
Sulfur Sodium	27 27	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
	21	(-)	ppm	111111						
ron										
Zinc										
Manganese										
Copper										
Boron							i			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484122
Customer Sample ID: 1029
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OI *								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	236	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	2	(-)	ppm**	I						1.3 lbs N/1000sqft
Phosphorus	163	(50)	ppm				11111111111	111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	183	(175)	ppm	11111111111	111111111111			ı		0 lbs K20/1000sqft
Calcium	6,782	(180)	ppm		111111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
/lagnesium	269	(50)	ppm		111111111111			111111		0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm	11111111111	111111111111		11111111111	1		0 lbs S/1000sqft
Sodium	8	(-)	ppm	ı						
ron										
linc										
Manganese										
Copper										
Boron							¦			
imestone Requirement										0.00 lbs/1000sqft
-										·
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484123
Customer Sample ID: 1030
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	235	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	IIIIIIII						1 lbs N/1000sqft
Phosphorus	58	(50)	ppm			IIIIIIIIII		11		0 lbs P2O5/1000sqft
Potassium	270	(175)	ppm			IIIIIIIIII		11111		0 lbs K20/1000sqft
Calcium	7,657	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	323	(50)	ppm			IIIIIIIIII		1111111		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm			IIIIIIIIII	!!!!!!!!!!!	Ш		0 lbs S/1000sqft
Sodium	31	(-)	ppm	IIIIIII						
ron										
Zinc Zinc								 		
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484085 Customer Sample ID: 1031 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	caline					
Conductivity	255	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
litrate-N	9	(-)	ppm**	111111111						1 lbs N/1000sqft
Phosphorus	245	(50)	ppm				11111111111	111111111111	IIII	0 lbs P2O5/1000sqft
Potassium	343	(175)	ppm	11111111111	11111111111		11111111111	11111111111		0 lbs K20/1000sqft
Calcium	11,918	(180)	ppm	11111111111			11111111111	(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	369	(50)	ppm	11111111111			11111111111			0 lbs Mg/1000sgft
Sulfur	39	(13)	ppm	11111111111	11111111111		11111111111	111111111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
ron										
linc										
/langanese							i			
Copper										
Boron							ļ			
imestone Requirement								·		0.00 lbs/1000sqft
•										·
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484086 Customer Sample ID: 1032 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	489	(-)	umho/cm	Slight			CL	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Phosphorus	119	(50)	ppm	11111111111	111111111111		11111111111	mmi	l	0 lbs P2O5/1000sqft
Potassium	515	(175)	ppm	11111111111	11111111111		111111111111111111111111111111111111111	mmini (i		0 lbs K20/1000sqft
Calcium	10,001	(180)	ppm	11111111111	111111111111		11111111111	mmmi	I	0 lbs Ca/1000sqft
Magnesium	1,094	(50)	ppm	11111111111	111111111111		111111111111111111111111111111111111111	mmi	II	0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	11111111111	111111111111		11111111111	III		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
Iron							ľ			
Zinc							!			
Manganese							i			
Copper							ŀ			
Boron							-			
Limestone Requirement									•	0.00 lbs/1000sqft
*CL -Critical lovel is the point w					NI			\ ·		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484087 Customer Sample ID: 1033 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkaline					
Conductivity	273	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**		IIIIII				0.4 lbs N/1000sqft
Phosphorus	187	(50)	ppm) IIIIIII (ШШЩ	II	0 lbs P2O5/1000sqft
Potassium	358	(175)	ppm			inning.	111111111		0 lbs K20/1000sqft
Calcium	22,842	(180)	ppm)	ШШЩ	l	0 lbs Ca/1000sqft
Magnesium	276	(50)	ppm)	Ш		0 lbs Mg/1000sgft
Sulfur	48	(13)	ppm			humuh	mmmķ		0 lbs S/1000sqft
Sodium	21	(-)	ppm	IIII					
ron									
Zinc						:			
Vlanganese						į			
Copper						;			
Boron									
Limestone Requirement				·					0.00 lbs/1000sqft
CL -Critical level is the point w	hich no add	itional nu	triant (avalue	ding pitrate N so	lium or	d condu	ctivity) ic	rocomi	mandad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484088
Customer Sample ID: 1034
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	185	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	7	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Phosphorus	92	(50)	ppm	11111111111					l	0 lbs P2O5/1000sqft
Potassium	116	(175)	ppm	11111111111	111111111111	IIIIIIIIIII	Ш			1.3 lbs K20/1000sqft
Calcium	6,455	(180)	ppm	11111111111		IIIIIIIIII	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(11111111111111111111111111111111111111	l	0 lbs Ca/1000sqft
/lagnesium	223	(50)	ppm			IIIIIIIIII		11111		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111			11111111111	111		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
ron										
Zinc Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484089
Customer Sample ID: 1035
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow V	Low	Low	Mod	High	VHigh	Excess.
οH	7.7	(6.5)	-	Mod. Alkalir	ne					
Conductivity	213	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	258	(50)	ppm				11111111111	11111111111	Ш	0 lbs P2O5/1000sqft
Potassium	245	(175)	ppm		mi		11111111111)11		0 lbs K20/1000sqft
Calcium	18,769	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	522	(50)	ppm				111111111111	//////////	II .	0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm	111111111111111111111111111111111111111			11111111111	1111111111		0 lbs S/1000sqft
Sodium	39	(-)	ppm	IIIIIII						
ron										
Zinc										
Vlanganese							i			
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484124
Customer Sample ID: 1036
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkaline)				
Conductivity	363	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	35	(-)	ppm**			11111			0 lbs N/1000sqft
Phosphorus	246	(50)	ppm			111111111111111111111111111111111111111		IIII	0 lbs P2O5/1000sqft
Potassium	275	(175)	ppm			inning.	IIII		0 lbs K20/1000sqft
Calcium	17,918	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	511	(50)	ppm			,,,,,,,,,,,,,,		II .	0 lbs Mg/1000sgft
Sulfur	36	(13)	ppm						0 lbs S/1000sqft
Sodium	22	(-)	ppm	IIII					
Iron						ľ			
Zinc									
Manganese						į			
Copper						i			
Boron						!			
Limestone Requirement									0.00 lbs/1000sqft
N 0 20 11 12 0 2 0				90 (NI			\ ·		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484090
Customer Sample ID: 1037
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	328	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	173	(50)	ppm	11111111111	111111111111		,,,,,,,,,,,,,,,		Ш	0 lbs P2O5/1000sqft
Potassium	457	(175)	ppm	11111111111	111111111111			mmi	l	0 lbs K20/1000sqft
Calcium	8,549	(180)	ppm	11111111111	111111111111		11111111111	mmi	II	0 lbs Ca/1000sqft
/lagnesium	552	(50)	ppm	1111111111	111111111111			mmi	II	0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111	111111111111		11111111111	11111		0 lbs S/1000sqft
Sodium	10	(-)	ppm	II						
ron										
Zinc .										
Manganese										
Copper							l			
Boron							¦			
imestone Requirement										0.00 lbs/1000sqft
C. Critical laval is the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484125 Customer Sample ID: 1038 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	295	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	3	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	37	(50)	ppm				111111			1 lbs P2O5/1000sqft
otassium	434	(175)	ppm	11111111111			111111111111	humi	I	0 lbs K20/1000sqft
Calcium	11,778	(180)	ppm	11111111111			:	. :	II	0 lbs Ca/1000sqft
Magnesium	203	(50)	ppm		111111111111			11111		0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm	11111111111				11		0 lbs S/1000sqft
Sodium	9	(-)	ppm							
ron										
linc										
/langanese										
Copper										
Boron							l			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484091
Customer Sample ID: 1039
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	302	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	61	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	402	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	14,202	(180)	ppm	11111111111		IIIIIIIIII		HHHHH	I	0 lbs Ca/1000sqft
Magnesium	239	(50)	ppm			IIIIIIIIII		Ш		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm			IIIIIIIIII		IIIII		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
Iron							i			
Zinc							ļ			
Manganese							i			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484126 Customer Sample ID: 1040 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		O								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	414	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**							0.6 lbs N/1000sqft
Phosphorus	150	(50)	ppm						II	0 lbs P2O5/1000sqft
Potassium	435	(175)	ppm) III III III III (0 lbs K20/1000sqft
Calcium	12,471	(180)	ppm							0 lbs Ca/1000sqft
/lagnesium	410	(50)	ppm					mmi	١	0 lbs Mg/1000sgft
Sulfur	39	(13)	ppm					111111111		0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
linc								·		
/langanese							i			
Copper										
Boron										
imestone Requirement								·		0.00 lbs/1000sqft
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484092
Customer Sample ID: 1041
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Al	kaline					
Conductivity	156	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	19	(50)	ppm	1111111111		IIIIIIIII				2.4 lbs P2O5/1000sqft
Potassium	123	(175)	ppm				Ш			1.1 lbs K20/1000sqft
Calcium	19,925	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	247	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm					111		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
			•							

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484127
Customer Sample ID: 1042
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.3	(6.5)	-	Slightly A	lkaline					
Conductivity	268	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	19	(-)	ppm**	1111111111111		III				0.5 lbs N/1000sqft
Phosphorus	323	(50)	ppm					111111111111	ШШ	0 lbs P2O5/1000sqft
Potassium	231	(175)	ppm		mmi	IIIIIIIIII	111111111111	וון		0 lbs K20/1000sqft
Calcium	6,657	(180)	ppm	1111111111111					II	0 lbs Ca/1000sqft
Magnesium	358	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm					111111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron							l			
Limestone Requirement										0.00 lbs/1000sqft
*CI Critical layed in the maint w										1 1 11

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484093 Customer Sample ID: 1044 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OI *								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	194	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	10	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	82	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	150	(175)	ppm							0.5 lbs K20/1000sqft
Calcium	16,916	(180)	ppm			IIIIIIIIII	1000000	шшш	II	0 lbs Ca/1000sqft
/lagnesium	333	(50)	ppm			IIIIIIIIII	11111111111			0 lbs Mg/1000sgft
Sulfur	36	(13)	ppm			IIIIIIIIII	111111111111	111111111		0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIIIII						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484128
Customer Sample ID: 1045
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.3	(6.5)	-	Slightly A	Alkaline					
Conductivity	252	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	308	(50)	ppm			IIIIIIIIIII	111111111111	11111111111	IIIIII	0 lbs P2O5/1000sqft
Potassium	238	(175)	ppm	111111111111	1111111111		11111111111	111		0 lbs K20/1000sqft
Calcium	7,603	(180)	ppm	1111111111111	11111111111		11111111111	(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
/lagnesium	362	(50)	ppm	111111111111		IIIIIIIIII	11111111111	111111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	111111111111	1111111111		11111111111	111111		0 lbs S/1000sqft
Sodium	23	(-)	ppm	IIII						
ron										
Zinc Zinc								l		
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484130
Customer Sample ID: 1047
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.2	(6.5)	-	Slightly Alkaline
Conductivity	936	(-)	umho/cm	Moderate CL. Fertilizer Recommended
Nitrate-N	69	(-)	ppm**	
Phosphorus	870	(50)	ppm	
Potassium	1377	(175)	ppm	
Calcium	12,246	(180)	ppm	
Magnesium	832	(50)	ppm	
Sulfur	122	(13)	ppm	
Sodium	185	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
·			•	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 484131
Customer Sample ID: 1048
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G		OI *	l luita							
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	caline					
Conductivity	343	(-)	umho/cm	None			CI	* .		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	89	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	296	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	13,412	(180)	ppm				: ,		II	0 lbs Ca/1000sqft
Magnesium	378	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	43	(13)	ppm	11111111111				1111111111		0 lbs S/1000sqft
Sodium	27	(-)	ppm	ШШ						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement									·	0.00 lbs/1000sqft
CL —Critical layel is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484094 Customer Sample ID: 1049 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/19/2017 Printed on: 5/9/2017 Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	332	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	10	(50)	ppm		11111111111					3.2 lbs P2O5/1000sqft
Potassium	349	(175)	ppm	11111111111	1111111111111		11111111111	11111111111		0 lbs K20/1000sqft
Calcium	16,262	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	286	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm					11		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 484824
Customer Sample ID: 1050
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/26/2017 Printed on: 5/9/2017 Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	152	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	33	(50)	ppm				IIII ;			1.3 lbs P2O5/1000sqft
Potassium	99	(175)	ppm		11111111111		!			1.7 lbs K20/1000sqft
Calcium	16,232	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	174	(50)	ppm				111111111111111111111111111111111111111	III		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm				шш	III		0 lbs S/1000sqft
Sodium	10	(-)	ppm	II						
Iron							i i			
Zinc										
Manganese							İ			
Copper							i			
Boron							ŀ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.